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ABSTRACT 1 
Demand Responsive Transport (DRT) offers a collective flexible travel alternative that can 2 
potentially complement Fixed Transit (FT). The combination of an on-demand and line-based 3 
services holds the promise of improved mobility and increased service coverage. However, 4 
insofar it remains unknown whether DRT services deliver such much anticipated improvements. 5 
This study presents an assessment framework to evaluate the performance of DRT and related 6 
changes in accessibility and performs an empirical analysis for a recently introduced DRT 7 
service in the Netherlands. The framework includes a performance benchmark between DRT and 8 
FT based on the computation of generalized journey times of the DRT rides and the FT 9 
alternatives, and it can help identify whether DRT is used as complement or substitute of FT. 10 
The framework covers the spatial and temporal dimensions, and the explicit consideration of 11 
rejected trips is an integral part of the evaluation. Results suggest large accessibility 12 
improvements for DRT users, especially for some underserved origin-destination pairs.  13 
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INTRODUCTION 1 
Reducing car use is high on the agenda for transportation planners, yet the flexibility and 2 
convenience that car provides makes it often a more attractive alternative than traditional fixed 3 
transit (FT). To compete with private car use, line-based FT can benefit from embracing new 4 
flexible services that have appeared in urban areas so as to improve and complement its services. 5 
Specially, Demand Responsive Transport (DRT) services (sometimes also known as collective 6 
on-demand services or paratransit), can potentially complement FT in urban areas. 7 

Even if DRT services are not a new innovation (they were already recommended for the 8 
future urban transportation in the sixties (1)), only recent technological advancements have 9 
enabled their real-time large scale operation. As a result, new urban DRT services have 10 
appeared, both in the USA (e.g., Bridj, Lyftline, UberPOOL, Via) and in Europe (such as Abel in 11 
Amsterdam, Kutsuplus in Helsinki, Padam in Paris or Radiobus di Quartiere in Milan). To better 12 
understand the utilization of these services and the role they play in relation to FT, a systematic 13 
assessment framework is proposed in this study.  14 

Several studies have aimed at helping planners design DRT systems. These studies help 15 
estimating the needed capacity for a given level of service and the resulting operating costs (2), 16 
or assessing if DRT should substitute FT for a given scenario (3), (4). Research has also 17 
evaluated via simulation the impact that DRT services would have in real urban networks, such 18 
as in Hino (Japan) (5), Lisbon (Portugal) (6) or New York City (USA) (7). However, little is 19 
known about how these services perform in real settings. A notable exception is Kutsuplus, 20 
“apparently the world’s first fully automated, real-time demand-responsive public transport 21 
service” (8), which operated between 2012 and 2015 in Helsinki, and for which a final project 22 
report is available. However, despite Kutsuplus being implemented as part of the public transport 23 
system, its final report does not include an analysis on the extent to which the new service 24 
improved the mobility in comparison to the already existent alternatives.  25 

This study fills this gap by introducing a DRT assessment framework that analyzes the 26 
improvement in mobility that a DRT system adds to the transportation network based on 27 
empirically observed usage patterns. Current DRT assessment frameworks contemplate the 28 
concept of DRT at high level without including concrete indicators (9) or focus on Key 29 
Performance Indicators (KPI) that consider DRT in isolation from other modes (10). In this 30 
study, the accessibility gains (i.e., the increased easiness to reach the required or desired 31 
activities (11)) that DRT granted for the performed trips are examined.  32 

The main objective of this study is to help transportation authorities in assessing the 33 
improvement in mobility that DRT users have experienced in relation to the co-existing FT 34 
alternatives. After a detailed description of the framework, it is applied to a DRT system in the 35 
Netherlands. Based on the observed results, the impacts of DRT as a complement to FT are 36 
discussed.  37 

 38 
METHODOLOGY 39 
The proposed DRT assessment framework covers three aspects. First, it analyzes the DRT 40 
system characteristics. Second, it examines DRT operation, involving both DRT usage and 41 
performance. Last, based on the operational characteristics of the system, a series of accessibility 42 
indicators are examined. This framework is depicted in FIGURE 1 and its components are 43 
detailed in the subsequent sub-sections.   44 
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 1 

 2 
FIGURE 1  Assessment Framework. 3 
 4 
DRT System Characteristics 5 
Before analyzing the DRT operation, it is necessary to understand the intrinsic characteristics of 6 
the system under consideration (upper box of FIGURE 1). We highlight five aspects of the DRT 7 
system:  8 

1. Coverage and routing. Defined by the operating area and the degree of flexibility in the 9 
operation. The latter can range from a fully flexible door-to-door service, to more rigid 10 
configurations where only partial deviations from a planned route are possible. 11 

2. Operating hours. Equivalent to the service span considered in FT.  12 
3. Vehicle characteristics. DRT fleets often consist of minibus vehicles, with previous 13 

research suggesting that a vehicle capacity of eight is the preferred vehicle size (12). 14 
Fleet size is also a key design variable of DRT systems since it will determine the 15 
different routes that can be covered simultaneously by the system. 16 

4. Booking system. The system can allow for instant bookings in real-time, require 17 
advanced bookings or allow for both options. Traditionally, dial-a-ride schemes relied on 18 
telephone reservations, but large-scale real-time DRT systems require internet connection 19 
to perform the bookings in an efficient manner.  20 

5. Request acceptance criteria. Time required to the pick-up point or vehicle availability are 21 
the often used criteria in deciding whether a request is accepted or rejected.  22 

 23 
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DRT Operation Features 1 
Because of its inherently dynamic interaction with demand, DRT performance is directly tied to 2 
its usage (13). As such, both aspects are an integral part in DRT operation (see middle box of 3 
FIGURE 1).  4 

 5 
DRT usage 6 
DRT usage is analyzed in terms of demand patterns. Three important aspects can be highlighted: 7 
journey distance, spatial usage patterns and temporal usage patterns. Journey distance can 8 
provide insights into the modes that would compete with DRT. For instance, short trips might 9 
substitute walking and cycling. The analysis of spatial usage reveals which origins, destinations 10 
and routes are most frequently used. This can shed light on areas with high demand which may 11 
not be conveniently served by FT. Lastly, the temporal usage identifies peaks in the operation, 12 
both by time of the day and by day of the week. Traditionally, transport demand in general and in 13 
particular public transport services tend to exhibit two daily peaks, following commuting 14 
patterns. Since shopping and social trips have been identified as the most recurrent trip purposes 15 
for DRT trips (14), different temporal usage patterns might be expected for DRT.  16 

 17 
DRT operation 18 
Regarding DRT operation, the presented framework considers two aspects: the Generalized 19 
Journey Time (GJT) and the share of declined trips. The GJT represents the perceived passenger 20 
journey time. It is calculated by multiplying the time of the different segments of the door-to-21 
door journey by different weighting factors so as to transform them into equivalent in-vehicle 22 
time (15). The different segments to take into account are the walking time ( ), the waiting time 23 
( ), the in-vehicle time ( ), and the number of transfers ( ). The GJT can be expressed as  24 

	 ∙ ∙ 	 	 	 ∙ , 25 
where  represent the different weighting factors. The estimation of these α has been the subject 26 
of a large number of public transport studies, e.g., (16), (17). It is important to note that the 27 
waiting time can be expected or unexpected, with unexpected waiting time being valued by 28 
passengers as 2-3 times longer than expected waiting times (18). As such, an accurate and up-to-29 
date forecast of the pick-up times in DRT services is of outmost importance to lower GJT.  30 

This study also includes the share of declined trips by the operator as a separate element 31 
in this assessment since it is an important reliability indicator of the DRT system. A systematic 32 
analysis of the declined trips can also help improve the DRT service and search for inequalities 33 
in operation (e.g., some zones may have a higher share of declined or less profitable trips and 34 
may thus suffer from more recurrent cancellations). Moreover, DRT operators could be 35 
penalized when declining trips for which no adequate FT alternative is available. 36 
 37 
Accessibility Indicators 38 
Following the analysis of DRT operation, this paper proposes a series of indicators that measure 39 
the change in accessibility attributed to the DRT service. These are depicted in the ovals in 40 
FIGURE 1.  41 
 42 
DRT vs. Active Modes 43 
DRT can be seen as a competitor of walking and cycling for admissible walking and biking 44 
distances. The threshold for admissible walking and cycling distances needs to be adjusted based 45 
on the DRT setting, since these values differ by region (19), as well as by trip purpose and 46 
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population subgroup (20). The first accessibility indicator expresses the share of walkable and 1 
bikeable trips as follows: 2 
 3 

%	 	
	 	 	 	 	 	 	

	 	 	
 

 4 

%	 	
	 	 	 	 	 	 	

	 	 	
 

 5 
The smaller these shares are, the less the actual DRT usage is competing with active 6 

modes. Note that although the former is a subset of the latter, biking is not always a feasible 7 
alternative (e.g., lack of a bicycle or cycling knowledge). As a result, including both indicators 8 
serves to, depending on the setting, better assess the actual competition of DRT with active 9 
modes. 10 
 11 
DRT vs. Long-distance Transit 12 
DRT operation is often restricted to a certain area. For trips that extend beyond these boundaries, 13 
DRT can be used as a complementary mode and connect passengers with long distance transit 14 
modes such as train, long distance bus, or regular bus for the case of DRT acting as a feeder. The 15 
second accessibility indicator is thus expressed as: 16 
 17 

%	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	
 

 18 
The larger this share is, the more DRT constitutes a connecting service to long distance 19 

transit.  20 
 21 
DRT vs. Fixed Transit 22 
DRT can also be used as the main mode of transport, competing with FT. This is the more 23 
general scenario due to the similitudes that DRT and FT exercise. In order to address this key 24 
aspect, the assessment framework provides a more complex benchmark against FT, in which two 25 
KPIs - the GJT and the Generalized Costs (GC) - are calculated and compared for DRT and FT.  26 

Following the workflow described in FIGURE 2, the GJT is calculated for the DRT trips 27 
and, if available, for the declined trips. The GJT of DRT are compared with the GJT that the 28 
passengers would have experienced if they had travelled using FT. Three parameters are used to 29 
calculate the GJT of the FT alternatives: booking time (as the desired start time), and origin and 30 
destination locations. Automatic Vehicle Location (AVL) data can be used for this purpose. If 31 
this information is unavailable, scheduled information from FT journey planners can be used. 32 
The GJT Ratio of each trip is expressed as:  33 
 34 

	  

 35 
 36 
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 1 
FIGURE 2  DRT accessibility performance benchmarks against FT. 2 
 3 

The GJTR indicator is analyzed by considering its distribution, and performed and 4 
declined trips are to be assessed separately. It is important to note that the median (or the 5 
quartiles for a more detailed representation) should be used to assess the distribution rather than 6 
rely on the mean due to the asymmetry caused by the ratio calculation. 7 

The GJTR can be further evaluated both spatially and temporally. An aggregated 8 
representation of this KPI can identify Origin-Destination (O-D) connections for which the DRT 9 
service has mostly improved the transit provision. A comparison between the number of 10 
performed and declined trips for the different O-D pairs can identify if rejections are more 11 
prevalent in certain areas. Moreover, a disaggregated representation can identify connections 12 
which are underserved by conventional transit. If significant temporal differences exist (either 13 
daily or weekly), the spatial analysis can be performed for different time intervals.  14 

The last step of the comparison between DRT and FT is based on the GC where the GJT 15 
values are multiplied by the corresponding value of time (VoT) (see Wardman et al. (21) for a 16 
recent meta-analysis on European VoT). The monetarized value of the GC Ratio indicator is 17 
expressed, similarly to the GJTR as: 18 

	  

Whenever the focus is set on the total monetary cost of the passenger instead on the 19 
temporal convenience of both modes, this GC indicator can be used. 20 

 21 
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APPLICATION 1 

Case Study Description 2 
The assessment framework described in the previous section was applied to the DRT pilot 3 
‘Breng flex’ which operates in the Arnhem-Nijmegen region in the east of the Netherlands. In 4 
the following, the Breng flex service in Nijmegen is analyzed. The pilot started in December 5 
2016 and it offers stop-to-stop connection with a total of 255 stops. The service area includes the 6 
city of Nijmegen and the neighboring municipalities of Wijchen, Berg en Dal and Oosterhout, 7 
with a total of approximately 200,000 inhabitants. Breng flex is run by Breng, the incumbent 8 
local bus operator. Simultaneously with its introduction, two bus lines that linked the 9 
municipality of Wijchen, traversed the central parts of Nijmegen and terminated at the northern 10 
part of Nijmegen, were cancelled. The Breng flex service has a fixed price of € 3.50 per person 11 
and operates from 6:30 to 24:00 during the weekdays, 8:00 to 24:00 on Saturdays and 9:00 to 12 
24:00 on Sundays. The fleet comprises of five minibuses (maximum of five seats for passengers 13 
and two wheelchairs) and four electric cars (maximum of three seats for passengers). Rides can 14 
be booked in real-time via a mobile app or a telephone number, and no advance booking option 15 
is available. Maximum waiting time is set to 20 minutes, rides that cannot be served within this 16 
time window will not be accepted.  17 

The analyzed data includes the pick-up and drop-off locations for all registered ride 18 
requests - both performed and declined trips - between the 16th December 2016 and 18th May 19 
2017. Booking times and expected in-vehicle times were available for the declined trips. Data for 20 
the performed trips also included actual in-vehicle time and waiting time. Rides with unrealistic 21 
average travel speed - lower than 10km/h (6.21 mph) or higher than 70km/h (43.48 mph) - were 22 
not considered in the analysis. For declined trips, requests with the same spatial characteristics 23 
that differed by less than 5 minutes were included only once in the analysis to prevent multiple 24 
counts. A total of 4719 performed trips and 130 declined trips (2.7 % of all requests) were 25 
considered valid for the analysis.  26 

Results 27 
The average distance of the served DRT trips is 7.05 km (4.38 mi). Since no sociodemographic 28 
data of the DRT users is available, the average walking and cycling distances in the Netherlands 29 
were used as thresholds for these modes- i.e., 1.2 km (0.75 mi) for walking trips (19) and 3.6 km 30 
(2.24 mi) for cycling trips (22). In total, 0.1% and 16.5% of the DRT trips could have been 31 
performed on foot and by bike respectively, with the large majority of the rides covering a longer 32 
distance than the average active mode trips.  33 

The obtained data does not allow identifying DRT trips that constitute a part of a longer 34 
transit trip. In order to have an approximation of the number of trips that could have used Breng 35 
flex as access or egress leg, we identified the number of DRT trips that had one of the six train 36 
stations within the case study area as pick-up point (12.3% of the rides) or drop-off point (8.3%). 37 
These numbers are upper bounds and suggest that up to 20 % of the rides could have been used 38 
to access or egress one of the train stations.  39 

The other indicators compare the DRT rides to FT rides. The characteristics of the FT 40 
rides that could have substituted the performed and declined DRT rides were obtained 41 
introducing the booking time and the start location and end locations of the DRT rides in the 42 
transit Google Maps Directions API (23). The API provides scheduled rather than actual transit 43 
data, hence possible deviations from plans in FT operations are not accounted for. As retrieval 44 
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criterion, we selected the FT trip with ‘the earliest time at the destination’. However, using this 1 
criterion, the option shown for 5 % of the performed trips and for 13% of the declined trips (242 2 
and 17 respectively) did not involve any transit, only walking. This is arguably an indication that 3 
the existing FT connection for these origins and destination is inadequate, or that the distance 4 
covered is rather short. To allow for a fair comparison where FT values can be attained, these 5 
trips are not included in the subsequent comparison of DRT and FT.  6 

For the previous trips, the GJT for the performed and declined trips were calculated (the 7 
factors used being 2	 	 10 (17)). The average waiting time of the performed 8 
trips (9.4 min) is taken as the estimated waiting time for the declined trips. The distribution of 9 
the GJTR is illustrated in FIGURE 3 for both served trips (a) and declined trips (b). The median 10 
for the performed trips is 0.50 (0.38 for the 25 percentile and 0.68 for the 75 percentile). In other 11 
words, for 50% of the performed trips, the FT alternative is perceived by the passengers over 12 
twice as long as the DRT alternative. For the declined trips, the median is 0.54 (0.45 for the 25 13 
percentile and 0.71 for the 75 percentile). These results attest to how the DRT alternative 14 
considerably improves the accessibility of the performed trips in comparison to the FT 15 
alternative.  16 
 17 

  
(a) 

 
(b) 

 
FIGURE 3  Distribution of the GJTR for DRT in comparison to PT: (a) for the performed 18 
trips (N = 4477) and (b) for the declined trips (N = 113).  19 
 20 

The distribution of the GJTR is now analyzed spatially, both in an aggregated and in a 21 
disaggregated manner. FIGURE 4 presents the aggregated spatial analysis of the performed trips, 22 
with (a) the zonal delimitations used (in which Nijmegen has been divided in three parts by 23 
following natural water barriers), (b) the O-D matrix in hundreds, and (c) the median of the 24 
GJTR corresponding to each of the O-D pairs. The difference in the number of rides for each of 25 
the O-D pairs is partly due to the difference in the population size of the different areas. 26 
Moreover, part of the demand between Wijchen and the different areas of Nijmegen may be 27 
attributed to users of the two bus lines that were eliminated with the introduction of Breng flex. 28 
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This fact also explains that trips from Nijmegen North to Wijchen have the lowest median for the 1 
GJTR indicator (the median DRT GJT is 22% of the FT GJT value). Conversely, the O-D pair 2 
for which the increases of accessibility provided by DRT in comparison to FT are the lowest is 3 
Oosterhout-Oosterhout (GJTR = 0.69). Regarding the declined trips, the low number of 4 
occurrences (with no occurrence at all for many of the O-D pairs) do not provide a representative 5 
sample to analyze if there are statistical differences between both trip groups and is therefore not 6 
included in the shown figures. Importantly, the number of declined trips for each O-D pair 7 
correlates with the number of served trip. Thus, there are no spatial disparities in the DRT 8 
service availability.  9 

 10 

 
 

(a) 
 

(b) 
 

(c) 
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FIGURE 4  Aggregated spatial analysis of DRT: (a) Zonal delimitation, (b) O-D matrix (in 1 
hundreds) and  (c) median of the GJTR for each O-D pair. 2 
 3 

The disaggregated spatial analysis is presented geocoded in FIGURE 5. The performed 4 
rides have been distributed in three graphs according to their GJT Ratios (a), (b), (c), while 5 
declined rides are illustrated in (d). Node size is consistent with the use frequency, as well as link 6 
size and link color intensity. The direction of the trips is represented clockwise. The large 7 
majority of the trips for which FT outperformed DRT (GJTR>1) were radial trips with an end in 8 
the center of Nijmegen, while recurrent links with a distinctive DRT benefit have a more 9 
tangential nature. No distinctive pattern can be observed between performed and declined trips. 10 
The large majority of the 255 DRT stops has been utilized during the study period, and the stop 11 
at the ‘Nijmegen central railway station’ was one of the two most recurrently used stops.  12 
 13 

  
(a) 

 
(b) 

 

  
(c) 

 
(d) 

 
FIGURE 5  Disaggregated spatial analysis of DRT: (a) performed rides with GJTR<0.5 14 
(2206 rides), (b) performed rides with 0.5<GJTR<1 (1905 rides), (c) performed rides with 15 
GJTR>1 (366 rides), and (d) declined rides (113 rides). Plotted in Gephi (24).  16 
  17 

The analysis of the evolution of the demand for Breng flex services shows a constant 18 
increase in the number of rides since the implementation of the DRT service. The number of 19 



Alonso-González, Liu, Cats, Van Oort, and Hoogendoorn 
  13 
 

 

trips in the last week quadruple the trips in the first weeks to its introduction. Due to this large 1 
variation in demand volumes, only the data from the last 10 weeks is considered in the search for 2 
daily and weekly variations in the demand levels. No statistically significant differences were 3 
found in the demand on different days of the week (p=0.113 for one-way ANOVA) but 4 
differences in demand levels at different hours of the day are statistically significant (p=0.001 for 5 
one-way ANOVA studying the hourly demand between 9 and 21 h). The hourly DRT demand 6 
does not show strong commuting peaks as in the case for FT, but smaller peaks still do exist, 7 
with the highest demand observed in the afternoon (around 15:00). A spatial representation of 8 
the peak period could identify the highest demand areas during this timeslot. Due to space limits, 9 
it is not presented in this paper.  10 

The last step described in the assessment framework involves the calculation of the GC of 11 
both performed and declined trips. A future modal shift from FT to DRT can arguably be 12 
expected if the GCR distribution favors DRT to a large extent. The VoT used for this study (both 13 
for DRT and FT) is the VoT calculated in Kouwenhoven et al. (25) for bus/tram/metro for all trip 14 
purposes in the Netherlands, which is 7.39 Euro per hour per person in 2016 terms. The 15 
distribution of the GCR is represented in FIGURE 6. The median for the performed trips is 0.75 16 
(0.60 for the 25 percentile and 0.97 for the 75 percentile). For the declined trips, the median is 17 
0.80 (0.63 for the 25 percentile and 0.99 for the 75 percentile). These results show that while 18 
DRT outperforms FT for the trips for which passengers opted for DRT, the distributions of the 19 
GC are closer to 1 than those of the GJT (FIGURE 3). This shift is caused by the higher fixed 20 
price for DRT than the distance-based FT fare, resulting with a smaller discrepancy in passenger 21 
disutility between the services when accounting for the price difference.  22 
 23 

  
(a) 

 
(b) 

 
FIGURE 6  Distribution of the GC for DRT in comparison to PT: (a) for the performed 24 
trips (N = 4477) and (b) for the declined trips (N = 113). 25 
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DISCUSSION 1 
Until recently, the main reasons for introducing DRT services were to substitute FT in low 2 
demand areas or to fulfill the needs of specific sectors of the population (mainly the elderly and 3 
the disabled). Also the case study service is partly introduced based on these grounds (it offers a 4 
barrier-free service and two fix bus lines were eliminated in conjunction with its introduction). 5 
Notwithstanding, it also offers a complementing service to FT, with the objective of improving 6 
the mobility offered in the area and to better address passengers’ needs. This additional role of 7 
DRT is in line with the Mobility as a Service paradigm, in which “mobility services [are bought] 8 
as packages based on consumers’ needs instead of buying the means of transport” (26), and for 9 
which different mobility services complement FT.  10 

Results of the case study show that for half of the performed rides, the DRT GJT were 11 
half or less than with FT, showing that large improvements in mobility can be attributed to DRT. 12 
Rayle et al. (27) compared the times that performed ridesourcing trips (i.e. trips provided by 13 
Transportation Network Companies (TNCs) such as Uber and Lyft) would have taken with FT. 14 
In line with the results of this study, they found that “the majority of ridesourcing trips would 15 
have taken more than twice as long if made by public transport”. Both results show that, even if 16 
these services may be competitors of FT, they improve the offered mobility, with the subsequent 17 
economic and social benefits.  18 

Despite the opportunities that DRT provides as complement to FT, its implementation 19 
also brings a series of risks that should not be overlooked. Three main risks are identified. 20 
Firstly, for a DRT system to achieve a high degree of efficiency, a relative large fleet is 21 
necessary, as stressed in Kutsuplus final report (8). As a result, the offered DRT service can 22 
become a (possibly heavily subsidized) individual taxi service. Secondly, if DRT provides a 23 
lower GC than FT, more users may shift from FT to DRT, with the FT revenue seeing a decrease 24 
and in extreme cases a possible increase in road congestion. An analysis of the incurred GC of 25 
both DRT and FT (as performed in this study) can help identify large differences in the costs that 26 
passengers incur with both services. Furthermore, FT revenue decrease can lead to the 27 
deterioration (or elimination) of the offered FT service, even if DRT may not be capable of 28 
absorbing the entire passenger demand. This second risk is elevated by recent research which has 29 
found that FT users are more prone to use DRT than non FT users (28). Finally, DRT services in 30 
their current regulatory framework do not guarantee a certain level of service. As a result, the 31 
risk of not obtaining the desired ride exists, the importance of which increases if no other 32 
alternative service (such as FT) is available. The share of declined trips could vary for different 33 
O-D pairs, with rides for less convenient/profitable locations being more likely to be declined. 34 
Thus, a spatial analysis of the declined rides should be performed together with the spatial 35 
analysis of the performed rides, as described in the suggested framework.  36 

The above mentioned risks can be reduced with an integrated FT-DRT approach. In an 37 
integrated FT-DRT network, the ride fee for DRT can be modified so as to obtain the desired 38 
split between the demand for DRT and FT. This price adjustment can be regulated based on 39 
different attributes. When striving for an equal urban accessibility, DRT price can be calculated 40 
as a function of FT accessibility. This will imply that price for DRT would be higher when a 41 
competitive FT alternative exists, and lower otherwise. The accessibility indicators proposed in 42 
this study can be used to adjust the DRT price function if this approach is adopted. An alternative 43 
price adjustment approach can be based on comfort considerations since more exclusive (and 44 
less collective) mobility services provide a higher utility to the passenger. This approach, which 45 
is used in the Flexible Mobility on Demand system presented in Atasoy et al. (5), implies that 46 



Alonso-González, Liu, Cats, Van Oort, and Hoogendoorn 
  15 
 

 

passengers should pay a higher fee for using a premium service which is less capacity-efficient. 1 
Whatever the adjusting function is, an integrated FT-DRT approach can increase the 2 
opportunities that DRT can bring as a complement to FT and decrease the collateral risks.  3 

CONCLUSIONS 4 
There are a wide range of innovative transportation services that have recently appeared in urban 5 
areas. However, they are often considered in isolation, and the impacts of their interactions and 6 
implications for other modes are largely ignored (29). This paper presents an assessment 7 
framework for evaluating the usage of DRT. A generalized travel cost comparison is proposed as 8 
an indicator of changes in accessibility related to the introduction of DRT in relation to the FT 9 
alternatives. Moreover, the usage of DRT as first or last leg in longer FT journeys, and the 10 
suitability of the performed rides for walking and cycling are also considered in this assessment. 11 
To the authors’ knowledge, this is the first study that measures the increase in accessibility that 12 
the implementation of DRT has granted DRT passengers, in comparison to the FT alternative. 13 
An empirical analysis is performed by applying the proposed framework to an urban DRT 14 
system in the Netherlands. Results indicate a reduction of over half of the generalized journey 15 
times for half the rides that were performed using the DRT service, in comparison to the FT 16 
alternatives. Results also identified areas for which this reduction is the highest, highlighting 17 
connections for which FT offers a poor alternative.  18 

Public transport authorities can use the proposed framework for one or more of the 19 
following purposes: 1) evaluate real performance of DRT for the different areas, including the 20 
distribution of declined rides; 2) identify whether DRT is used as a complement of FT, due to 21 
poor FT connections, or as a substitute of FT, due to the higher comfort DRT provides, and 3) 22 
assess the impacts of DRT on improving mobility.  23 

Other than DRT, recent studies have shown that other flexible modes, such as 24 
ridesourcing and car-sharing, may also complement public transit (30). However, even if a series 25 
of partnerships between them and transit are already in place, data concerning their usage is 26 
necessary to enhance transit planning (31). The assessment framework provided in this study can 27 
be extended to analyze the usage of other flexible modes and better identify opportunities for 28 
synergies as opposed to symbiotic relations where new services gain the most lucrative markets.  29 

In the absence of information on individual characteristics, the shortcomings of this study 30 
pertain to the unobserved drivers of user behavior. The analysis of travel behavior under 31 
different conditions will allow estimating demand elasticities, the socioeconomic characteristics 32 
of DRT riders or differences in perceived times for DRT with respect to FT values. Future 33 
studies could include these aspects in their evaluation by incorporating travel survey data. Also, 34 
further research is needed to analyze how urban development characteristics and transit-related 35 
factors influence DRT usage, as already researched for taxi ridership (32).  36 
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