Large language models and transformers

B. Mehlig- Department of Physics, University of Gothenburg, Sweden

Sources

Linander, The mathematics behind large language models (2023)
Penke, A mathematician’s introduction to transformers and large language models (2022)

Language models

Linander, The mathematics behind large language models (2023)

Language model: predicts next word in a sentence.

The quick brown fox jumps over the lazy dog. wikipedia.org

r1 T rs T4 Ts Le X7 T8 I9

A language model parameterises the probability p(azt+1 |xt, e ,a:1). Parameters are
determined by training. For example, for 1, x2,x3 = the, quick , brown,

p(z4 = fox) > p(z4 = butter)

Assign probability to sentence:

T
p(xTa SR 7331) — Hp(xtlxt—la SR 7331)
t

—Ncoding

Linander, The mathematics behind large language models (2023)

For the machine to interpret text, need to map vocabulary to numbers.
Lipton et al. (2015) arxiv:1506.00019

One possibility is to map the words (fokens) in the dictionary to integers (foken ID)
as follows

a=1,aardvark =2,...

In a second step, one embeds the words to row vectors. Schematically

word a aardvark

token ID 1 2

embedding 0.3,0.8,0.1] [0.9,0.2,0.4]

Training recurrent networks

Unfold the recurrent network for machine translation.
Train it using data set of translated sentences by backpropagation through time.

Vanishing-gradient problem

Hochreiter & Schmidhuber, Neural Computation 9 (1997)

Create short cuts by replacing hidden neurons with units that can either map input non-
linearly or short cut it, V(¢) = V (¢t — 1), depending on trainable parameters.

V(t—1) V(t) Vi(t-1 V(t
A : (t-1) SRT (t)
x(1) xt) () =0(Y wyw Z Vit =1)),
k
Different versions: LSTM or GRU. ra(t)=o() w (1) Z (”’)V 1)),
The unit short cuts wh x v
Zeinllso cuts when hq;(t)zg(zng Th Z (h) t—1)),

Vi(t) = [1 — zi(t)]hi(t) + Zz'(?f)‘/%(t —1).

Additional parameters (weights and
thresholds are trained in the usual
fashion).

Machine translation

Sutskever et al., NIPS 27 (2014)

Recurrent network for machine translation

In the beginning there was chaos <EOS >

O O O

[LSTM 1{LSTM 1}-{ LSTM 1}->{LSTM 1|{LSTM 2|—)|LSTM 2»LSTM 2|—)|LSTM 2»LSTM 2|—>|LSTM 2LSTM 2|

Y iy

Chaos war Anfang Am <EOS> In the beginning there chaos

Si-directional recurrent neural nets

Lipton et al. (2015) arxiv:1506.00019

Improved algorithm for machine translation uses bi-directional recurrent neural network.

backward

forward

Google translate.

Wu et al., Google’s Neural Machine Translation System: Bridging the Gap between Human
and Machine Translation, arxiv1609.08144

Dependencies

Attention mechanism designed to
Represent long-range correlations.

The colours represent long-range
dependencies (correlations) that
the machine has learnt. Different
columns () correspond to different
attention heads.

For instance, the verb making
depends strongly on more and
difficult, reflecting the likely sequence

making ... more difficult

How does it work?

Vaswani et al. (2017) arxiv:1706.03762

It It

is is
in in
this this
spirit spirit
that that
a a
majority majority
of of
American American
governments govemments
have have
passed passed
new new
laws laws
¢¢ since since
2009 2009
making making
the the
registration registration
or or
voting voting
process process
more more
II liifﬂcui difficult
<EOS> <EOS>

<pad> <pad>

Attention

Penke, A mathematician’s introduction to transformers and large language models (2022)
Durafsky & Martin, Speech and language processing (2021)

An attention layer maps a sequence

x1i,..., L7 to an output sequence
Yi,---,Yr of the same length.

q, = x, W2

ky = 2, W)

vy = 2, W

o » = softmax(Ngq, - k;)

Y, = E Q¢ rUr
-

Attention

Penke, A mathematician’s introduction to transformers and large language models (2022)

The attention layer can process all words in the sequence in parallel

1 q, _kl] (251
T q- ko Vo
X — Q= K — V —
T qr Lz (U |

using the operations

Q = XW®@ K = XW*) Y = softmax(NQK")V
(softmax s applied row-wise).
The matrix Y has the same dimension as X.

The weight matrices W@, W) and W) are trained by backpropagation.

10

Attention heads

Penke, A mathematician’s introduction to transformers and large language models (2022)

Usually one has several attention
layers (attention heads) in parallel,

is is
with independent weights. in in
this this
] spirit spirit
Concatenate outputs Y Vof the na hal
dlffel’eﬂt |ayer8 [Y(l) 3 Y(2), ..] aﬂd majority majority
map to original dimension with different oo o
. . merican American
another Welgh’[matrix W(O) heads governments govemments
have have
passed passed
Y — [y(l) y(2) ._.]W(o) W rew new
’ ! laws laws
since since
2009 2009
making making
the the
registration registration
or or
voting voting
process process
’ more more
B [ifiicult: difficult
<EOS> <EOS>
<pad> <pad>

11

Transformers

Linander, The mathematics behind large language models (2023)

Transformers consist of multi-headed attention layers, fully-connected layers, and
residual connections.

the quick brown [pad]
0.3,0.8,0.1] [0.7,0.4,0.3] [0.1,0.1,0.5] [0,0,1]
v v v v
multi-headed attention layer
fully connected feed-forward layer
multi-headed attention layer
fully connected feed-forward layer
J J J U
0.7,0.3,0.2]

fox

12

Training

Penke, A mathematician’s introduction to transformers and large language models (2022)

Transformers are trained in the usual way by gradient descent, using automatic
differentiation (TensorFlow, PyTorch).

Loss function based on log likelihood.

Pre-training. Language model is trained on a generic data set (e.g., WikiText) to learn
general features. www.tensorflow.org/datasets

Embedding is part of pre-training.
Fine tuning. Pre-trained model is trained further on data set of interest.

This two-step procedure is more efficient and less prone to overfitting, compared with
training from scratch for a specific data set.

Inference. Using the trained large language model, user input is converted to output
(ChatGPT).

13

Transformer architectures

GPT

BERT

GPT-2

GPT-3

OpenGPT-X

encoder-decoder for machine (2017)
translation Vaswani et al. (2017) arxiv:1706.03762

generative pre-trained transformer (2018)
Radford et al. (2018) Improving understanding by generative pre-training

bidirectional encoder representations (2018)
from transformers Deviin et al. (2018) arxiv:1810.04805

trained on larger data sets (2019
Radford et al. (2019)

even larger data set, 10'!training parameters, (2020)
improved training, with few-shot learning Brown et al. (2020)

open-source European large language model (2022)
opengpt-x.de

14

Few-shot learning

Jaghouar, Gustafsson, Mehlig, Werner & Gustavsson, DAGM GCPR Pattern Recognition (2022)

Usually the network needs to see an image many times to recognise it reliably.

l@llllmll&
Training set contains only few of the . !

et IIIBO

Let network try to find this sign in large test set. Result:

NN
R Qs [

3 R
Ordered according to output in channel l& . All outputs small. But the largest of these
are still meaningful. See above paper for references to few-shot learning.

Can networks learn to recognise rare
patterns? Example: rare traffic signs.

IN'\

\ Network output in channel [(.-

(between 0 and 1). Outputs
sum to unity over all channels.

15

Training data sets

Linander, The mathematics behind large language models (2023)
Touvron et al. (2023), arxiv:2302.13971

Dataset Sampling prop. Epochs Disk size
CommonCrawl 67.0% 1.10 3.3TB
C4 15.0% 1.06 783 GB
Github 4.5% 0.64 328GB
Wikipedia 4.5% 2.45 83 GB
Books 4.5% 2.23 85 GB
ArXiv 2.5% 1.06 92 GB
StackExchange 2.0% 1.03 78 GB

Intotal ~ 10'? tokens. Touvron et al. (2023), arxiv:2302.13971

16

ChatGPT

Linander, The mathematics behind large language models (2023)

ChatGPT is based on GPT-3. Additional fine tuning using reinforcement learning with
Human feedback.

Could you write a Python program that calculates the digits of pi using no external
imports?

Yes, here's a Python program that calculates the digits of pi using the Bailey-Borwein- 9 G&”

Plouffe (BBP) formula, which allows the computation of the nth hexadecimal digit of pi
without computing the preceding n-1 digits. Note that the program below only

calculates the first *'n” hexadecimal digits of pi.

python) Copy code
(n:

pi =
k range(n):
pi += (L/pow(16,kDI*((4/(8*k+1))-(2/(E*k+4))-(1/(8*k+5))-(1/(8*k-
hex(int(pi * pow(16,n)))[2:]

print(pi_digits(10))

The program above first defines a function “pi_digits™ that takes an argument “n~,
which specifies the number of hexadecimal digits of pi to calculate. It then iterates over

arange of “n” values, using the BBP formula to calculate the nth digit of pi. The

Hampus Linander (2023)

17

Reinforcement learning

Sutton & Barto, Reinforcement Learning: An Introduction, MIT Press (2018)
Mehlig, Machine learning with neural networks, CUP (2021)

Supervised learning requires labelled data (targets ¢)
Unsupervised learning does not need labels.

Reinforcement learning: only partial feedback in terms of a reward function, e.g.

+1 reward if all outputs correct

r= . (immedliate reward)
—1 penalty otherwise

Learning by trial and error.

Seqguential decision process. Estimate expected future reward.

agent

Agent explores a sequence of states sp, S1,82,... rewardr,
through a sequence of actions ag, a1, as,...and

\ St+1
recelives rewards r1,72,73,.... T_1 \% environment

Goal: estimate expected future reward R, = > 1741 . .

state s,
action a;

Method: iteratively improve estimate of expected future reward, given state s;
and action a .

18

Backgammon

Tesauro, NIPS (1991)

Reinforcement learning allows computers to learn to play board games.

Practical Issues in Temporal Difference Learning

Program | Training Games Opponenis
TDG 1.0 300,000 Robertie, Dawis, -13 pts/51 games
Magriel (-0.25 ppg)
TDG 2.0 800,000 Goulding, Woolsey, | -7 pts/38 games
snellings, Russell, (-0.18 ppg)
Sylvester
TDG 2.1 1,500,000 Robertie -1 pt/40 games
(-0.02 ppg)

Table 1. Results of testing TD-Gammaon in play against world-class
human opponents. Yersion 1.0 used 1-play search for move selection;

versions 2.0 and 2.1 used 2-ply search. Yersion 2.0 had 40 hidden units;

versions 1.0 and 2.1 had 80 hidden units.
Tesauro, Communications of the ACM (1995)

Gerald Tesauro
IBM Thomas J. Watson Research Center
P. O. Box 704
Yorktown Heights, NY 10598
tesauro@watson.ibm.com

Abstract

This paper examines whether temporal difference methods for training
connectionist networks, such as Suttons’s TD()) algorithm, can be suc-
cessfully applied to complex real-world problems. A number of important
practical issues are identified and discussed from a general theoretical per-
spective. These practical issues are then examined in the context of a case
study in which TD()) is applied to learning the game of backgammon
from the outcome of self-play. This is apparently the first application of
this algorithm to a complex nontrivial task. It is found that, with zero

19

AlphaGo

Silver et al. Nature (2016,2017)

Reinforcement learning allows computers to learn to play board games.

Agents: two players,

Environment: the opponent,

States: board configurations,

Actions: moves,

Future reward: » = +1 (win),
r=—1 (lose).

o

In AlphaGo’s case, that involved splitting itself in half and playing millions of %

matches against itself, learning from each victory and loss. In one day alone, :8. o)

AlphaGo was able to play itself more than a million times, gaining more ‘e
practical experience than a human player could hope to gain in a lifetime. In ﬁ*%‘
essence, AlphaGo got better at Go simply by thinking extremely hard about

the problem. Alex Hern, in: The Guardian (2016) L NREPY.

20 British GO association

Temporal difference learning

T—1
Future reward Ry = > [rry1 .

Use neural network with input s: (state) to estimate R; ,

O(St) = W - Sy (linear unit, weight vector w)

Minimise energy function H = % Z |? using
gradient descent: t=0
T-—1
00
OWyy, = R, — O —
w U ;[t (st)] ow,,

Trick: express error R, — O(s;) as sum over temporal differences

T—1
R; — O(sy) = Z[TTH + O(8741) — O(87)] with O(sp) =0
T=1

21

Temporal difference learning

Insert this expression for R, — O(s;) into the gradient-descent
rule:

ow = nTz:sz:l[rTH + O(sr41) — O(s7)]s
t=0 7=t
Terms in this double sum can be summed in a different way
ow = U:Fz_f i[ﬂﬂ + O(8r41) — O(s7)]sq
Exchange sun;jnzwglt?c:)r: variables and add weights Al
dw =1 Z [7i41 + O(8¢41) — O(s4)] Z ATTs
t=0

Alternative: update w (and hence O) at every time step:
t

dw; = n[resq + O(wy,s¢11) — O(wy,st)] Z A Ts
7=0
This is the temporal difference learning rule TD(\).

22

)

SARSA

Temporal difference learning TD(\) .

dwy = n[rir1 + O(wye,8:11) — O(wy,St)] Z A Ts
7=0
The TD(0)-rule corresponds to the following learning rule for the network output

Ot+1(8t) = Or(st) + n[rev1 + Oe(St4+1) — Or(5t)]

For a sequential decision process, estimate the expected future reward given s; and a
Qui1(se,ar) = Qi(se,a1) + 1|71 + Qu(St41, arp1) — Q(8¢, ay)]

To update one needs s¢, a:, Ti41, Si+1, a1 (SARSA).

Problem: iteration depends upon policy for how to choose the next action, a;41 .

Greedy policy: choose the action one with largest Q:(s¢, a;) .
Stochastic policy: mainly greedy, but sometimes do something else.

Explore-versus-exploit dilemma. | /L)L
. a; aiiq

4\, .,
St St+1 St42

23 Qi(se-1,a¢-1) Qrs1(St,a4)

Y

Q-learning

The Q-learning rule is an approximation to SARSA that does not depend on a4 .

Instead one assumes that the next action, a;1, is the optimal one, regardless of
the policy that is currently followed:

Qt+1(3t7 at) — Qt(8t7 at) + 77[7“t+1 + mgx Qt(3t+17 a) - Qt(St, at)]
Q-learning is simpler than SARSA, but approximate.

Learn to play tic-tac-toe: r = +1 (win), » = 0 (draw), r = —1 (lose).

>
S0 S1 ST-1 o Performance for Tic-tac-toe
O O Qg)-‘ 11\
player x O[X O|X OX
X < XIO% f*_-? draw

\“10 / , \al / , \ / , \aT—l

a a, ar_p
O O [X
player o X O[X OX O[X
X Xl IX X|O|X 0 | | L
so s ST_» ST 0 10 20 30

o4 number of rounds x 10>

Summary

This last part of the lectures is based on the sources

Linander, The mathematics behind large language models (2023)
Penke, A mathematician’s introduction to transformers and large language models (2022)

Attention mechanism efficiently represents long-range dependencies
(overcomes vanishing-gradient problem of recurrent nets).

Efficient because attention layer processes inputs x1, ..., x7rin parallel using
matrix-vector products.

Transformers consist of stacked multi-headed attention layers, fully connected
Feed-forward layers, and residual connections.

Trained in the standard fashion plus reinforcement learning.

Transformers for image analysis Liu et al. (2021) arxiv:2103.14030

25

