Machine learning with neural networks

B. Mehlig- Department of Physics, University of Gothenburg, Sweden

Bernhard Mehlig, Machine learning with neural networks



Machine learning with neural networks

Cambridge University Press (2021)

BERNHARD MEHLIG

MACHINE LEARNING
WITH NEURAL NETWORKS

An Introduction for Scientists and Engineers

... Rather than presenting canned algorithms, this book tackles the fundamentals. As such, it is not for

the faint hearted, but requires a sound background in theoretical physics, drawing on concepts such as ...
Probert, Contemporary Physics (2022)



Neurons in the cerebral cortex
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Neurons in the cerebral cortex (outer layer of the cerebrum, the largest and
best developed part of the mammalian brain). Drawing by Santiago Ramon y Cajal, the
Spanish neuroscientist who received the Nobel Prize in Physiology and Medicine in
1906 together with Camillo Golgi ‘in recognition of their work on the structure of the
nervous system’.  Courtesy of the Cajal Institute, ‘Cajal Legacy’, Spanish National
Research Council (CSIC), Madrid, Spain.



Neuron anatomy and activity

Schematic drawing of a neuron Output of a neuron: spike train
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Spike train in electrosensory pyramidal neuron in
fish (Eigenmannia)

Total length of dendrites up to ~ c¢m . Gabbiani & Metzner, J. Exp. Biol. 202 (1999) 1267



McCulloch-Pitts neuron

McCulloch & Pitts, Bull. Math. Biophys. 5 (1943) 115

Simple model for a neuron: Neuron ¢ computes weighted sum of inputs
with weights w, ; , subtracts threshold 0, ,

T and takes activation function:
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Activation function

Signal processing of McCulloch-Pitts neuron: weighted sum of inputs x; with activation
function ¢(b;):
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Activation function g(b):

q{b) = sgn(b)
1
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Signum function g(b) = sgn(b)

Two states: active (+1), inactive (-1).



Activation function

Signal processing of McCulloch-Pitts neuron: weighted sum of inputs x; with activation
function g(b;):
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Activation function g(b):
g‘gb) = sgn(b) g(b) ng)
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Signum function g(b) = sgn(b) Tangens hyperbolicus RelLU function max(0, b)

Two states: active (+1), inactive (-1). Continuous range of state values.



Neural nets

Rosenblatt, Psychological Review 65 (1958) 386

Connect neurons into networks that can perform computing tasks: for example object
location and identification, speech recognition, classification, clustering,...
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Deep neural net (many hidden layers).

Simple perceptron
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Convdiut‘iénal neural net Krizhevsky, Sutskever & Hinton (2012) - -

Achieve this by adjusting weights and thresholds.



A simple classification task (N = 2)

Input patterns ") | Index w=1,...,p labels different patterns.

Each pattern has two components, :zzg“ ) and xg‘) .

X2
2 0N

Arrange components into vector, ) = | "L |, .
') is shown in the Figure. T2 O -

: O = z®) -
Patterns fall into two classes: o on .
the left, and m on the right. O . X1

|




A simple classification task (N = 2)

Input patterns ") | Index w=1,...,p labels different patterns.

Each pattern has two components, :zzg“ ) and azg“) .

L2
2 1
Arrange components into vector, ) = | "L |,
) is shown in the Figure. L2
n
Patterns fall into two classes: O on - S
the left, and m on the right. X1

Draw a red line (decision boundary) to distinguish
the two types of patterns (O and m).
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A simple classification task (N = 2)

Input patterns ") | Index w=1,...,p labels different patterns.

Each pattern has two components, :zzg“ ) and azg“) .

5
2 1
Arrange components into vector, ) = | "L |,
x®)is shown in the Figure. 12
n
Patterns fall into two classes: O on - R
the left, and m on the right. X1

Draw a red line (decision boundary) to distinguish
the two types of patterns (o and o).

Aim: train a neural network to compute the decision boundary. To do this, define target
values:

+() — 1 for m, and t\*) = —1 for O

Training set (")t n=1,....p .
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Geometrical solution
Rosenblatt, Psychological Review 65 (1958) 386

Minsky & Papert, Perceptrons. An introduction to computational geometry. MIT Press (1969)

Simple perceptron: one neuron. Two input terminals z1 and x5 . Activation function sgn(b) .
inputs No threshold, § = 0 .
L1 w1
Output OW = sgn(wlxgm + ngg”)) — sgn(w - M)

output O

L2 @ wa scalar product w - ™) = |w| |x™| cosp « angle between

w and z®

Aim: adjust the weights w so that network outputs correct target values for all patterns:

] t(ﬂ) =1
(1) — )y — (1) ¢ —1
ow—_1 T2 OW =ggn(w - x'"") =t or u=1,...,p
Solution:
COS

= define decision boundary by w - ") =0 T\ . / R

. so that w L decision boundary. | N/ o ¥

> 1

Check: w -z >0 => 0 = sgn(w - M) = 1
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Geometrical solution

Minsky & Papert, Perceptrons. An introduction to computational geometry. MIT Press (1969).

Simple perceptron: one neuron. Two input terminals z1 and x5 . Activation function sgn(b) .
inputs No threshold, § = 0 .
L1 w1
Output OW = sgn(wlxgm + ngé”)) — sgn(w - M)

output O

2@ wy scalar product w - ™) = |w| |x™| cosp « angle between

w and z®

Aim: adjust the weights w so that network outputs correct target values for all patterns:

] t(ﬂ) =1
(1) — )y — (1) ¢ —1
ow—_1 T2 OW =ggn(w - x'"") =t or u=1,...,p
Solution:
COS

= define decision boundary by w - ") =0 T\ . / R

. so that w L decision boundary. | N/ o ¥

> 1

Check: w -z >0 => 0 = sgn(w - M) =1
Correct since 1) = 1J
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Hebb’s rule

D. O. Hebb, The organization of behaviour: a neurospychological theory, Wiley, New York (1949)

Now the pattern z'®) is on wrong side of the red line. So O® = sgn(w - x®) £ t®) .

Move the red line by rotating the weight vector w :

14



Hebb’s rule

D. O. Hebb, The organization of behaviour: a neurospychological theory, Wiley, New York (1949)

Now the pattern z'®) is on wrong side of the red line. So O® = sgn(w - x®) £ t®) .
Move the red line by rotating the weight vector w :

w' = w + nz® (small parameter 1 > 0) so that O®) = sgn(w’ - ®)) = t&)

Legend
g W= _1 AZUQ )
[ |
O
(m] [ |
O = -
. A
T
| ,w/. 1
[ |
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Hebb’s rule

D. O. Hebb, The organization of behaviour: a neurospychological theory, Wiley, New York (1949)

Now the pattern z'*) is on wrong side of the red line. So O™ = sgn(w - &™) £t .

Move the red line by rotating the weight vector w :
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Hebb’s rule

D. O. Hebb, The organization of behaviour: a neurospychological theory, Wiley, New York (1949)

Now the pattern z'*) is on wrong side of the red line. So O™ = sgn(w - &™) £t .
Move the red line by rotating the weight vector w :

w' = w — nz'® (small parameter 1 > 0) so that O™ = sgn(w’ - &) = ).

Legend
g W= _1 AxQ
O
[ |
O = -
. A
O X1
w' .
d, u
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Hebb’s rule

D. O. Hebb, The organization of behaviour: a neurospychological theory, Wiley, New York (1949)

Now the pattern z'*) is on wrong side of the red line. So O™ = sgn(w - &™) £t .
Move the red line by rotating the weight vector w :

w' = w — nz'® (small parameter 1 > 0) so that O™ = sgn(w’ - &) = ).

Note the difference in sign:

o
. i(; - T2 w' =w+nz® for 1® =1
= . w =w—nzY for W = 1
o ™ = - Learning rule (Hebb's rule)
o w'm ke w' = w + dw with dw = ntHWa®)
B " = Apply learning rule many times until problem is solved.

18



—xample - AND function

Logical AND Legend
[ t(#) =1
2 O ¢ =1
r1 To ¢ o threshold

B w

_ O = O
—_ = O
| I |
e
8
[
,/8
p—
I
—t

L1
Neuron computes O™ = sgn(w - ) — 6).

Condition for decision boundary: w-x — 6 =0 .

: . . g & intersection with z2-axis
Line equation for decision boundary: z; = — 1 +

w2 !

The threshold 6 determines intersection of decision boundary with x2 -axis.

19



—xample - XOR function

Logical XOR u i) =]

2 O (-

L1 T2 ¢

0O 0 -1

1 0 1 " =

0 1 1

1 1 -1
! n >

20



—xample - XOR function

Logical XOR o i1
R O ¢ =1
L1 T2 t
0O 0 -1
1 0 1 n =
0o 1 1
1 1 -1
O i > T

This problem is not linearly separable because we cannot separate m from o by a
single red line.

21



—xample - XOR function

Logical XOR o i1
R O ¢ =1
L1 T2 t
0O 0 -1
1 0 1 n =
0o 1 1
1 1 -1
O i > T

This problem is not linearly separable because we cannot separate m from o by a
single red line.

Solution: use two red lines.

22



—xample - XOR function

Logical XOR
[} t(#) =1
X
e o - 1
L1 T2 ¢ J
0 0 -1
] O
1 0 1 N
0 1 1
1 1 -1
( | >
XL
N, N, 2
layer of hidden neurons
V1 and V5 (neither input
Two hidden neurons, each one defines one red line. nor outpur)

all hidden weights equal to 1
We need a third neuron to process the output of the hidden neurons.

It computes O = sgn(1; — V5 — 1)

One reason why we need hidden neurons => deep nets => deep learning

(with many hidden layers)
23



Non-(linearly) separable problems

Solve problems that are not linearly separable with a hidden layer of neurons

[ ] t(“):1 A
ot =—1 H

O [ |
> X
1
DVD

Four hidden neurons - one for each red line segment. Move the red lines into the
correct configuration by repeatedly using Hebb’s rule until the problem is solved
(a fifth neuron assigns regions and solves the classification problem).

24



Training

Train the network on a training set (w(“),t(“)), uw=1,...,p :move red lines into the
correct configuration by repeatedly applying Hebb’s rule to
) _ 1 To adjust all weights. Usually many iterations necessary.
B = A
o +W=_1 - H
| | - |

O [ |
> T
1
DVD
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Training

Train the network on a training set (w(“),t(“)), uw=1,...,p :move red lines into the
correct configuration by repeatedly applying Hebb’s rule to
) _ 1 To adjust all weights. Usually many iterations necessary.
B = A
o +W=_1 - H
| | - |

O |
> T
DVI:I |
O

Training with Hebb’s rule dw,,,, = ntWzW  Better: dwm, = n(t' — O zW - Almost
the same, but converges.

Once all red lines are in the right place, apply network to a new data set. If the training set
was reliable, then the network has learnt to classify the new data, it has learnt to generalise.
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Training

Train the network on a training set (w(“),t(”)), uw=1,...,p :move red lines into the
correct configuration by repeatedly applying Hebb’s rule to
) _ 1 To adjust all weights. Usually many iterations necessary.
B = A
ot =—1 N
|
| m " .
m |
o O u
. VEI A ]
O 9] o x
O = °
o|o

Once all red lines are in the right place (all weights determined), apply network to a new
data set. If the training set was reliable, then the network has learnt to classify the new data,
it has learnt to generalise.
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Training

Train the network on a training set (w(“),t(”)), uw=1,...,p :move red lines into the
correct configuration by repeatedly applying Hebb’s rule to
) _ 1 To adjust all weights. Usually many iterations necessary.
B = A
ot =—1 N
|
| m " .
m |
o O u
. VEI A ]
O 9] o x
O = °
o|o

A small number of errors is acceptable. It is often not meaningful to try to fine-
tune very precisely.

28



Overditting

Train the network on a training set (w(“),t(”)), uw=1,...,p :move red lines into the
correct configuration by repeatedly applying Hebb’s rule to
adjust all weights. Usually many iterations necessary.

m =1 A L2
O =1 u Here: used 15 hidden neurons to fit decision boundary
m = very precisely.
s T
- [h . > Too many free parameters: network fits fine details
> 1, ;
= ol " specific for training set, but lack general meaning
O I (overfitting).
9 olo
A different sample from the same input distribution might

training data set look quite different in detail, inputs shifted randomly by
a different realisation of input noise.

29



Overditting

Train the network on a training set (w(“),t(”)), uw=1,...,p :move red lines into the
correct configuration by repeatedly applying Hebb’s rule to
) _ 1 To adjust all weights. Usually many iterations necessary.
B = A
ot =_1

u Here: used 15 hidden neurons to fit decision boundary
very precisely.

T Too many free parameters: network fits fine details
specific for training set, but lack general meaning
(overfitting).

A different sample from the same input distribution might
test data set look quite different in detail, inputs shifted randomly by
a different realisation of input noise.

Networks usually have many parameters (weights and
thresholds) => overfitting can be substantial problem.

30



How many hidden layers?

All Boolean functions with NV inputs can be trained/learned with a single hidden layer.

Proof by construction. Requires 2™V neurons in hidden layer.

For large IV, this architecture is not practical
because the number of neurons increases
exponentially with V.

Example: parity function. More efficient layout:
build network using XOR units.
Requires only ~ N units.

But such deep networks
are in general hard to
train.

inputs hidden layers outputs
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Parity function: O =1 if odd
number of inputs equal 1,
otherwise O = 0.



Convolutional networks

Convolutional network. Each neuron in
first hidden layer is connected to a small
region of inputs. Here 3 x 3 pixels.

Slide the region over input image. Use same

weights for all hidden neurons. Update V;;
3 3

Vij = g(z Z WpqLp+i—1,q+j—1 — ‘9)

p=1g=1

- detects the same local feature everywhere in
input image (edge, corner,...). Feature map.

- the form of the sum is called convolution

- less overfitting because fewer weights

input

e0epOO0OOOO0

hidden
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O
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o
e
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hidden
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O0000Gaans
OO000O0Jeee
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00000
000000
000000
000000
000000
00000

- use several feature maps to detect different features in input image
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Convolutional networks

- max-pooling: take maximum of V,,,,, over small region (2 x 2) to reduce # of parameters
input10x10 hidden 8 x 8 x 4 fully connected

q 00000
deeepoocooo
deee

00000000 X X XX
Jeee OOOOO% 00000000 \."Q/ \Q"'Q’(
3 )ooooo\ 4 [oco00000 2000\
(IXI)00000 999090922 S/ O 7\
0000000000 I OC2X2 oo 3
S LT QA
0000000000 36086666

4x4x4

- add fully connected lavers to learn more abstract features

\ 5 192 128 204 2028 \dense
: 128 — —
5 27 .
/ \"", S 13 13
224 ( ST BJ N5 \T E e
.. . 13 T

M - 7 57 3\]': _— \1’ 3| BiEEs 13 dense’| [dens
LE s A - — — B B 1000
220\ll¢frigd Max 128 Max pooling 297 2048
o pooling oolin . .
IR Peee Krizhevsky, Sutskever & Hinton (2012)
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Object location and classification

Deep convolutional nets locate and classify objects in
images with very high accuracy.

Better than humans®?
cs.stanford.edu/people/karpathy/ilsvrc

Convolutional nets have been around since 1986.

-

e

L1

-

—

—

Goodfellow, Bengio & Courville (2016)
T T T T T T T

30 | CNN

T
|
|
|
|
|
|
|
|
|

10
estimateof *__» [
Human error 0 :

2010 2012 2014 2016 2018
Year

Top-5 Error in %
o
<

o B g8 4 88

Patterns (T and C) detected by convolutional net Rumelhart, Hinton & Williams (1986)

It was always thought that deep nets are very difficult to train (overfitting, slow

learning)

Why does it suddenly work so well?
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Object location and classification

Deep convolutional nets locate and classify objects in
images with very high accuracy.

Better than humans?
eesstETOrd.edu/people/karpathy/ilsvrc

Convolutional nets have been around since 1986.

-

b

L1

-
-

-

Goodfellow, Bengio & Courville (2016)
CNN

30 f

T
|
|
|
|
|
|
|
|
|

10
estimateof *__» [
Human error 0

Top-5 Error in %
o
=

1 | | |

2010 2012 2014 2016 2018
Year

o B g8 4 88

Patterns (T and C) detected by convolutional net Rumelhart, Hinton & Williams (1986)

It was always thought that deep nets are very difficult to train (overfitting, slow

learning)

\Why does it suddenly work so well?
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Object location and classification

Goodfellow, Bengio & Courville (2016)
Deep convolutional nets locate and classify objects in CNN

images with very high accuracy. 07

T
|
|
|
|
|
|
|
|
|

Better than humans®?
cs.stanford.edu/people/karpathy/ilsvrc

10
estimateof *__» [
Human error 0 :

2010 2012 2014 2016 2018
Year

Top-5 Error in %
o
<

Convolutional nets have been around since 1986.

[:] ”: l:l :” % B:B % EtB

Patterns (T and C) detected by convolutional net Rumelhart, Hinton & Williams (1986)

It was always thought that deep nets are very difficult to train (overfitting, slow
learning)

Why does it suddenly work so well? Mainly: better training sets (larger sets and more
accurate targets).
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Data sets: ImageNet

image-net.org

Must collect and manually annotate huge amounts of data.
Expensive. Ethical questions. Classifcation errors.

One of the first large data sets used for training large convolutional networks was
created in the public domain: Imagenet with > 107 images in 10 categories.

IM&GENET

14,197,122 images, 21841 synsets indexed

Not logged in. Login | Signup

. =
Plant, flora, plant life 1271 90.17% E
(botany) a living organism lacking the power of locomotion picture: Popularity I\ggrdﬂet

© Numbers in brackets: (the number of Treemap Visualization Images of the Synset Downloads
synsets in the subtree ).

* ImageNet 2011 Fall Release (32326) [ ¢ ' [
} plant, flora, plant life (4486)
*.. phytoplankton (2)
L. microflora (0)

- holophyte (0)

- non-flowering plant (0)
plantlet (0)
wilding (141)

i ornamental (1)

- pot plant (0)
acrogen (0)

- apomict (0)

- aquatic (0)

- cryptogam (1)

i hygrophyte (0)
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Data sets: autonomous driving

Object recognition using a deep convolutional network. Shownis a frame
from a movie recorded by a data-collection vehicle of the company Zenseact. The
neural net recognises pedestrians, cars, and lorries, and localises them in the image
by bounding boxes. Copyright © Zenseact AB 2020. Reproduced with permission.
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Object location and classification

Deep convolutional nets locate and classify objects in
images with very high accuracy.

Better than humans”?
eesstETOrd.edu/people/karpathy/ilsvrc

Convolutional nets have been around since 1986.

-

b

L1

—

—

—

Goodfellow, Bengio & Courville (2016)
T T T T T T T

30 | CNN

T
|
|
|
|
|
|
|
|
|

10
estimateof *__» [
Human error 0 :

2010 2012 2014 2016 2018
Year

Top-5 Error in %
o
<

o B g8 4 88

Patterns (T and C) detected by convolutional net Rumelhart, Hinton & Williams (1986)

It was always thought that deep nets are very difficult to train (overfitting, slow

learning)

Why does it suddenly work so well? Mainly: better training sets (larger sets and more
accurate targets).
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Better than humans?

cs.stanford.edu/people/karpathy/ilsvrc

This is a labeling interface for some of the validation images of the ILSVRC 2014 classification task. It was written by @karpathy to help evaluate human accuracy on
ILSVRC 2014, as desribe in blog entry here. After a lot of training, our best annotators get approximately 5.1% Hit-5 error rate (in other words, all 5 guesses are wrong
only 5.1% of the time). See if you can beat Google's GooglLeNet ConvNet that achieves 6.7%! For every image, you have 5 guesses out of the 1000 categories below.

Use normal course (normal distribution, default) Use hard course (images GoogLeNet did not get)

4
P& HUMAN: 0/0 COMPUTER: 0/0
course: normal, course ix: 0, val ix: 40001
[physical entity| [matter| [substance| [food, nutrient] [foodstuff, food product] [starches| potato, white potato, Irish potato, murphy, spud, tater]|

Show answer Show google prediction [ W
|bread, breadstuff, staff of life| [loaf of bread, loaf|
|meat loaf, meatloaf

Next
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Manual annotation of training data

xkcd.com/1897

TO COMPLETE. YOUR REGISTRATION, PLEASE. TELL US
WHETHER OR NOT THIS IMAGE CONTAINS A STOP SIGN:

ANSWER QUICKLY—O0UR SELF-DRIVING
CAR 1S ALMOST AT THE INTERSELTION.

41



What do the hidden layers learn?

Mehlig, Machine learning with neural networks, Cambridge University Press (2021)

To which patterns do hidden neurons react most strongly”?

Patterns that give largest activations of hidden neurons in residual convolutional
network trained on the imagenet data base. F M. Graetz https://towardsdatascience.com
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Recognising hand-written digits

LeCun, Cortes, Burges (2012)

@)
THE MNIST DATABASE e
O 01
[ ] [ ] L J O . 2
of handwritten digits o ¢
Yann I eCun, Courant Institute, NYU O Q89
Corinna Cortes, Google Labs, New York input feature maps fully  output
Christopher J.C. Burges, Microsoft Research, Redmond connected

Training set: 60 000 hand-written digits, test set: 10 000 digits.

Convolutional network trained on training set 0 ‘ 4/
classifies digits in test set with high accuracy.
Best result: only 23 out of 10 000 wrong. 5 é

Ciresan, Meyer & Schmidhuber, arxiv:1202.2745

Some MNIST digits misclassified by ) wﬂ
a state-of-the-art network. Oleksandr Balabanov )

CIN\, ™
%
A~

O target U“ q o
O output
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Lagrangian coherent structures

Storm, Linander, Bec, Gustavsson & Mehlig, Phys. Rev. Lett. (2024)

Neural networks are discrete dynamical systems, the layer index ¢ plays the role of time.
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I
0 NS e
W NS RS \N—
AR INSUNS
MT?Z;;,%‘E:E N —
1 AN
\\// (i /-\\:§§‘ ’/’—\’///7;:; ‘\‘\
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A AN SNV
ARSI ISR | RS
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JINNNLLNNY
. : e : BANSN MM AT
Ridges of large maximal finite-time Lyapunov =~ BSXEs—,
. g e =
exponent (local stretchin NN 2N
p g NTINNN SN\
IO 2NN ~>=\
s =
1 \ - \\\s =/
(L) 1|zt SN =
A (x20) = Zlog |[—— - T U TR
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Lagrangian coherent structures ST S

Haller, Ann. Rev. Fluid Mech. 47 (2015) 137 44



Lagrangian coherent structures

Storm, Linander, Bec, Gustavsson & Mehlig, Phys. Rev. Lett. (2024)

Neural networks are discrete dynamical systems, the layer index ¢ plays the role of time.
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Lagrangian coherent structures

Storm, Linander, Bec, Gustavsson & Mehlig, Phys. Rev. Lett. (2024)
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Input deformations

Convolutional network trained on the MNIST data set (60 000 digits) classifies digits in a

MNIST test set with high accuracy. Only 23 out of 10 000 wrong.
Ciresan, Meyer & Schmidhuber, arxiv:1202.2745

But the neural net fails on our own digits! O \ 9 A4 S € I K9

Oleksandr Balabanov
arxiv:1901.05639

Neural nets excel at learning patterns in a given input distribution very precisely.
But they may fail if inputs come from a different distribution.

In this case a neural net may classify an input with high confidence (O,E”) ~ 0, ) but
its prediction may nevertheless be wrong.

When can we be certain that the prediction is correct?

Fundamental problem: estimate uncertainty.

47



Further problems

Convolutional nets do not understand what they see in the same way as Humans do.

Convolutional net misclassifies
slightly distorted image with high
confidence Szegedy et al. arxiv:1312.6199

original image correctly slightly distorted image
classified as car classified as ostrich

Convolutional net misclassifies noise
with 99.6% certainty.
Nguyen et al. arxiv:1412.61897

[ cheewh | |

peacock |

classified as leopard

The nearest decision boundary is Khurshudov, blog (2015)

very close. Not intuitive but =~ _ = || =, Translational-invariant nature of
possible in high-dimensional /\ A convolutional layout makes it
input space. ”D \ difficult to learn global features.

[m] o
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Conclusions

Artificial neural networks were already studied in the 80ies. < 30| CNN
5
In the last few years: deep-learning revolution due to E 20
- better training sets &0l
- better hardware (GPUs, dedicated chips) - ~——
0 ' 1 | 1 L

. . ) ) 2010 2012 2014 2016 2018
Applications: google, facebook, tesla, medical sciences,.... Year

But: neural nets do not understand what they learn in the way Humans do, and the nets
learn in a different way - which we do not fully understand.

Are neural networks intelligent?

What are the challenges we face as machine learning is more widely adopted in the natural
sciences, and in society?

The algorithms get better and better (better training). What are the key risks?



