Unsupervised learning

B. Mehlig- Department of Physics, University of Gothenburg, Sweden

Introduction

Neural networks and deep learning (repetition)
Unsupervised learning

Reinforcement learning

N

Bernhard Mehlig, Machine learning with neural networks, Cambridge University Press (2021)

INntroduction

Supervised Semisupervised Unsupervised
Neural net Principal-component
o0 0 0 analysis
5§ Woyoodo o 3 X
£ Jelololo o 3 . m
o o o o 1
hidden layers - - L >
Convolutional neural net
o

o oo
O OO

output

Reinforcement learning

= 2

ococcoconen
0000 OHN N
06000Cc00CO
000000030
00000 GI00
00000 DLOO

occocoono0C0

) . o 4o - agent :ll h
Input convolution layers fully connected & 4
image hidden layers 5 state action
o >
Recurrent neural net Reservoir computing - environment <:ﬂ
random network
C) L
g g ‘E',’L . ..
-2 o & £ . Self-organizing map
o
recurrent ,O ¢ - initial
neurons random trained

connections connections

Deep neural networks

Rosenblatt, Psychological Review 65 (1958) 386

Connect neurons into networks that can perform computlng tasks. Adjust parameters
(weights and thresholds) to minimise output error H = 3 Z t(u) (u))}

Inputs CB(”) hidden layers outputs oW

Inputs(u—l,...,p)

‘ e .v
\\‘/‘ o7/ kvf@}\\of{ﬁ

[(1)]
SR AN 1
SR IRR IIE PIL IR 0‘ z = |
/ =, W, J WOy, v
< \\.r”“\\\v/}"“v"“ v"“\\\V B¢
Deep neural net (many hidden layers). i
o Output for input 2" Target for (")
max pooling O 00 (/,L)- B (,U/)_
| O O1 Ol tl
I—I| | o e oW — : () —
1 o i - :
i o (©) (n)
. O) OM _tM |
input feature maps -()r{:llc);cd output - -
Convolutional neural net input dimension V- large
Krizhevsky, Sutskever & Hinton (2012) size of data set P - very |arge

number of layers L - large

3

Training — supervised learning

Rosenblatt, Psychological Review 65 (1958) 386

Determine network parameters (weights w;; and thresholds 6; by minimising H .

Learning rule for weights w;,,,, = Wmn + 0Wpyn With Sw,,,, = —nOH /0w, -
Example

H = %Zw[t,g“) - Oi(w(w)]z with Oi(w(/i)) = g(zj wijl‘gu) —6;)
Use chain rule: :b(u)

g0\ ’

a?uin - Ziu(t'&('u) - O,g“))aw;n

00 (1) () 1 m=i

50— = 9 (b)0miTm’ with 8,,; = -

0 m#i inputs ~outputs

Resulting learning rule:

Essentially Hebb’s rule, 6wy, = nt't a1 |

o™

Unsupervised learning

Unsupervised learning

Unsupervised learning: learning without labels (targets)

decision boundary

Binary classification problem ¢(#) = +1.

Supervised learning finds decision boundaries
for labelled data [z, tW] n=1,... p.

Input distribution Pyata(x)

Unsupervised learning can identify
clusters in the input data =* |
pw=1,...,p,drawn from input

distribution Py.¢a(x)

Competitive learning

1 m is winning neuron (w,,, closest to x),

0 otherwise.

Learning rule. dw,,, = nym (T — w,,) With Ym = {

Closely related to Hebb’s rule dw,,., = ny..x, . Second term is weight decay.

Example: patterns * and weights w; one unit circle.

W) =w+ 0w,

Competitive learning finds clusters in input data.

7

Self-organising map

Topographic map: non-linear representation of high-dimensional input distribution that
preserves distance.

|dea: self-organising topographic map develops in response to the inputs it receives.
Competitive learning rule with distance information

X3 inputs
A _—

L
" K %%

input space data distribution Pyata ()
output space
network of
g weights w

output neurons,
) — each with weight vector w
1
8

Topographic map for MNIST digits

Non-linear dimensionality reduction.

Inputs: MNIST digits.

O | 2 3 #
5 b F 8§ 5

lterate learning rule to reach
steady state.

Then, for each input =*), find
location of winning neuron in
output array (the one with the
largest output).

Winning neurons for same digits

form clusters. Topographic map.

8 |

8] 18

3

3

w

21 L8

I

=

150

]

3
|
S
]

8

3]

8
(9] 19

3]

[9]

7

4

9

- [

I‘

Human Genome Diversity Project

Home Stanford HGDP SNP Genotyping Data

https://hagsc.org/hgdp
Genetic data (10° SNPs) from 1043 3 sooe haa 2 adi
individuals from 51 different populations oy ‘.’,“”068]3
around the world. g © % % '!'OEB
@ © 8 8 . ® 0 ¢ O
1043 individuals ' Qe Ooo@o 8 ‘&.’ 8%
n HGDPO0O448 HGDP00479 HGDPO098S HGDP01094 HGDPO09S2 @ % : O ® CSouh Asial
-k N L SO T L o
() r=10000929 2G aa an AG 3G % & o © Middle East
Yo rs10001378 TT cc T, cc TT O g @) ’ ©® Oceania
S rs10001548 TC T TC cc TC 2%@ (& h O & ® ® : gfrica
rs10002472 GG aG GG GG an urope
O 8 8 r. ® Ame:jica

1 ‘ .
) ¥ 3
Self-organising map creates a topo- 8 O§o8

praphic map, placing individuals who fﬁ 8§ g 04

are closely related (few SNPs) in the

(@)
same cluster. ® ® “"i’ g
.' 5 %‘“ 15 20 0 25 30

Eriksson, Loviken, Luketina & Mehlig (2014)

Genetic variation reflects Human demographic history.

Autoencoders

[dea: use inputs as targets, t) = z ()

® encoder f.(x) bottleneck decoder f;(2) g
®

o A+ O 4+ 0O A+ O 4+ 0O (@)
® @) @) O @) o

- @) -
3., ® 100[% 1009 2] 100|© 100]°© o 3.,
® O o O O O
® O o O O O
® O
® O
input x latent output x

variables z

Encoder: z = f.(x) . Decoder: x = f;(z). Energy function

2

H =33, [e" — folf(z)]]

Minimise H . Expensive way of learning the identity function = — fy[f.(x)]?

11

Autoencoders

Clustering of inputs in latent plane, panel (a).

(b)
3Yysbt 729
3 q

inputs

o -\

-

0
’,

/ o
/ 2

outputs

(c)
22292222212

Autoencoders are generative models, panel (c).

Reinforcement learning

13

Reinforcement learning

Sutton & Barto, Reinforcement Learning: An Introduction, MIT Press (2018)
Mehlig, Machine learning with neural networks, CUP (2021)

Supervised learning requires labelled data (targets ¢)
Unsupervised learning does not need labels.

Reinforcement learning: only partial feedback in terms of a reward function, e.g.

+1 reward if all outputs correct

r= . (immedliate reward)
—1 penalty otherwise

Learning by trial and error.

Seqguential decision process. Estimate expected future reward.

agent

Agent explores a sequence of states sp, S1,82,... rewardr,
through a sequence of actions ag, a1, as,...and

\ St+1
recelives rewards r1,72,73,.... T_1 \% environment

Goal: estimate expected future reward R, = > 1741 . .

state s,
action a;

Method: iteratively improve estimate of expected future reward, given state s;
and action a .

14

Backgammon

Tesauro, NIPS (1991)

Reinforcement learning allows computers to learn to play board games.

Practical Issues in Temporal Difference Learning

Program | Training Games Opponenis
TDG 1.0 300,000 Robertie, Dawis, -13 pts/51 games
Magriel (-0.25 ppg)
TDG 2.0 800,000 Goulding, Woolsey, | -7 pts/38 games
snellings, Russell, (-0.18 ppg)
Sylvester
TDG 2.1 1,500,000 Robertie -1 pt/40 games
(-0.02 ppg)

Table 1. Results of testing TD-Gammaon in play against world-class
human opponents. Yersion 1.0 used 1-play search for move selection;

versions 2.0 and 2.1 used 2-ply search. Yersion 2.0 had 40 hidden units;

versions 1.0 and 2.1 had 80 hidden units.
Tesauro, Communications of the ACM (1995)

Gerald Tesauro
IBM Thomas J. Watson Research Center
P. O. Box 704
Yorktown Heights, NY 10598
tesauro@watson.ibm.com

Abstract

This paper examines whether temporal difference methods for training
connectionist networks, such as Suttons’s TD()) algorithm, can be suc-
cessfully applied to complex real-world problems. A number of important
practical issues are identified and discussed from a general theoretical per-
spective. These practical issues are then examined in the context of a case
study in which TD()) is applied to learning the game of backgammon
from the outcome of self-play. This is apparently the first application of
this algorithm to a complex nontrivial task. It is found that, with zero

15

AlphaGo

Silver et al. Nature (2016,2017)

Reinforcement learning allows computers to learn to play board games.

Agents: two players,

Environment: the opponent,

States: board configurations,

Actions: moves,

Future reward: » = +1 (win),
r=—1 (lose).

o

In AlphaGo’s case, that involved splitting itself in half and playing millions of %

matches against itself, learning from each victory and loss. In one day alone, :8. o)

AlphaGo was able to play itself more than a million times, gaining more ‘e
practical experience than a human player could hope to gain in a lifetime. In ﬁ*%‘
essence, AlphaGo got better at Go simply by thinking extremely hard about

the problem. Alex Hern, in: The Guardian (2016) L NREPY.

16 British GO association

Control

Reddy, Wong-Ng, Celani, Sejnowski & Vergassola, Nature (2018)

Control of soaring glider with reinforcement learning. gradients of vertical
wind velocity

roll-wise torque

z (m)
— 700

End
o @600

o
[4,]
u,(ms™)

~ 500

- 400 -1

— 300

- 200

Start

200
400
400

v (m) o , x (m)

Different representations of actual glider trajectories. Left: soaring with learned strategy.

17

Associative reward-penalty algorithm

Behavioural sciences: learn to associate expected behaviour given certain stimuli.

Single stochastic neuron subject to stimuli @
_ J+1 with probability p(b),
Y7 Y-1 with probability 1 — p(b),

with b = w -z and p(b) = (1 + e 2°)"1,

+1 with probability preward (€, ¥y),

Reward
r(x,y) = {

Learn to maximise reward by adjusting the weights.

Learning rule dw,, = nr(y — (y)]z,, related to Hebb’s
rule dWmn = NYmTn

Better convergence with asymmetry, reduce weight
update by factor 0 < 6 < 1when r = —1

18

Reward probabilities

Preward y:_l y:‘|‘1
™ =1[1,0" 0.6 0.8
x® =1[1,1]" 0.3 0.1

—1 with probability 1 — prewara(®, 7).

Maximal expected reward
Tmax = % [<7°(CU(1), +1)>reward + <7”‘(i13(2), _1)>reward}
=1[0.8—-0.2+0.3-0.7=0.1

reward
A
0.1 ----------------------------- / 6 == 0.01
_—0=0.05
o S 5=0.1
-0.1 L

|
2500 iterations

Temporal difference learning

T—1
Future reward Ry = > [rry1 .

Use neural network with input s: (state) to estimate R; ,

O(St) = W - Sy (linear unit, weight vector w)

Minimise energy function H = % Z |? using
gradient descent: t=0
T-—1
00
OWyy, = R, — O —
w U ;[t (st)] ow,,

Trick: express error R, — O(s;) as sum over temporal differences

T—1
R; — O(sy) = Z[TTH + O(8741) — O(87)] with O(sp) =0
T=1

19

Temporal difference learning

Insert this expression for R, — O(s;) into the gradient-descent
rule:

ow = nTz:sz:l[rTH + O(sr41) — O(s7)]s
t=0 7=t
Terms in this double sum can be summed in a different way
ow = U:Fz_f i[ﬂﬂ + O(8r41) — O(s7)]sq
Exchange sun;jnzwglt?c:)r: variables and add weights Al
dw =1 Z [7i41 + O(8¢41) — O(s4)] Z ATTs
t=0

Alternative: update w (and hence O) at every time step:
t

dw; = n[resq + O(wy,s¢11) — O(wy,st)] Z A Ts
7=0
This is the temporal difference learning rule TD(\).

20

)

SARSA

Temporal difference learning TD(\) .

dwy = n[rir1 + O(wye,8:11) — O(wy,St)] Z A Ts
7=0
The TD(0)-rule corresponds to the following learning rule for the network output

Ot+1(8t) = Or(st) + n[rev1 + Oe(St4+1) — Or(5t)]

For a sequential decision process, estimate the expected future reward given s; and a
Qui1(se,ar) = Qi(se,a1) + 1|71 + Qu(St41, arp1) — Q(8¢, ay)]

To update one needs s¢, a:, Ti41, Si+1, a1 (SARSA).

Problem: iteration depends upon policy for how to choose the next action, a;41 .

Greedy policy: choose the action one with largest Q:(s¢, a;) .
Stochastic policy: mainly greedy, but sometimes do something else.

Explore-versus-exploit dilemma. | /L)L
. a; aiiq

4\, .,
St St+1 St42

21 Qi(ss-1,a:-1) Qt+1(spar)

Y

Q-learning

The Q-learning rule is an approximation to SARSA that does not depend on a4 .

Instead one assumes that the next action, a;1, is the optimal one, regardless of
the policy that is currently followed:

Qt+1(3t7 at) — Qt(8t7 at) + 77[7“t+1 + mgx Qt(3t+17 a) - Qt(St, at)]
Q-learning is simpler than SARSA, but approximate.

Learn to play tic-tac-toe: r = +1 (win), » = 0 (draw), r = —1 (lose).

>
S0 S1 ST-1 o Performance for Tic-tac-toe
O O Qg)-‘ 11\
player x O[X O|X OX
X < XIO% f*_-? draw

\“10 / , \al / , \ / , \aT—l

a a, ar_p
O O [X
player o X O[X OX O[X
X Xl IX X|O|X 0 | | L
so s ST_» ST 0 10 20 30

20 number of rounds x 10>

Motile micro-organisms

Motile micro-organisms in the ocean react to sensory input.

Copepods jump to escape predator Gyrotaxis for vertical migration

[L_§

z Kessler, Nature 313
(1985) 218

Stefan Di Criscio (2012) youtube.com
Shape change: bet-hedging in a turbulent eddy Chain formation for vertical migration
') _ Lovecchio, Climent, Stocker & Durham,
M Science Advances 5 (2019) 2375

Mechanism:

Gustavsson, Berglund, Jonsson & Mehlig,
Phys. Rev. Lett. 116 (2016) 108104

Sengupta, Carrara & Stocker, Nature 543
(2017) 555 03

Reinforcement learning for microswimmers

Optimal strategy not obvious. Depends on the signals the organism picks up as it moves
(strain, vorticity, fluid acceleration), and upon how it may respond.

Use machine-learning to find optimal strategies for selected targets. Goals:
-understand which selective pressures matter for evolution
-improve models for motile microswimmers
-optimise smart swimmers to perform certain tasks

Phytoplankton in the ocean: maximise upward swimming velocity to reach water surface.
Colabrese, Gustavsson, Celani & Biferale, Phys. Rev. Lett. 118 (2017) 158004

Zooplankton (copepods): jump to minimise risk of predation.
Ardeshiri, Schmitt, Souissi, Toschi & Calzavarini, J. Plankton. Res. 39 (2017) 878

Control problem: minimise time for active particle to move from A to B in turbulent flow.

Control variable: steering angle.
Buzzicotti, Biferale, Bonaccorse, Clark Di Leoni & Gustavsson (2019)

Responses: change buoyancy, shape, internal mass distribution, swimming speed & stroke...

24

Symmetries

Qiu, Mousavi. Gustavsson, Xu, Mehlig & Zhao, arxiv:2104.11303 (2021)

Proof-principle-studies show that reinforcement learning finds superior strategies.

Colabrese, Gustavsson, Celani & Biferale, Phys. Rev. Lett. 118 (2017) 158004
Buzzicotti, Biferale, Bonaccorse, Clark Di Leoni & Gustavsson, Chaos 29 (2019) 103138
Alegashan, Verma, Bec & Pandit, Phys. Rev. E 101 (2020) 043110

Schneider & Stark, Europhys. Lett. 127 (2019) 34003

Gunnarson, Mandralis, Novati & Koumoutsakos, arxiv:2102.10536 (2021)
Muinos-Landin, Fischer, Holubec & Cichos, Science Robotics 6 (2021)

Agents had access to global information in lab frame. But usually agents don’t carry a map:

signals & actions are local.

To learn good strategies for vertical migration in
isotropic flow requires symmetry breaking in signals
and/or actions.

Example: settling allows upward navigation in steady isotropic

flow using only local signals (strain) and actions (local steering).

25

08—

I naive
06| ~HEEERL |
' [Jrandom
s 045
~
=
= 0.2}
0f —=ma .
ol
/

'02 ! // .
no breaking settling
of symmetry

Black box?

Qiu, Mousavi. Gustavsson, Xu, Mehlig & Zhao, arxiv:2104.11303 (2021)

Reinforcement learning gives interpretable results.
Q-matrix allows to infer mechanism that underlies optimal strategy.

Previous example: swimmer navigating two-dimensional steady isotropic flow with local
signals and actions. Symmetry breaking due to gravity: settling & gyrotaxis.

202 L() / U N

Swimmer measures local strain.

It learns to behave like a slender
passive, bottom-heavy particle that
tends to sample upwelling regions
of the flow that transport the particle

upwards. Gustavsson, Berglund, Jénsson & Mehlig,

Phys. Rev. Lett. 116 (2016) 108104

26 upwelling region

Challenges

Curse of dimensionality (Q learning inefficient if number of state-action pairs too large)
-resolved by deep reinforcement learning (old idea)?
-use symmetries to reduce size of Q matrix?

Interpretation (how to extract most important and robust features of best strategy)
-general method?

Signals
- | ' ?
how does organism perceive the flow? ~_ Redaelli, Candelier, Mehaddi & Mehlig,
-which signals are most important for given reward function? arxiv:2105.01408 (2021)
-which signals can micro-robot measure reliably?

Reward function
-reward based on mean values doesn’t allow to learn to respond to rare events
-competing rewards (minimise energy consumption, avoid predation)

Convergence

-convergence proofs of Q-learning rely on Markovian dynamics. Usually not Markovian.
27

Beyond single swimmers

Collective search strategies

-collective olfactory search in turbulence

(heuristic model)

Mean wind &
o N e . G 3
o~ 2. 50 T R ¥
S \A ,"—:':';.‘t’ - ‘-.. v.:.::\ .. “
.o .‘Rb
Ly

Durve, Piro, Cencini, Biferale, Celani, Phys. Rev. E 102 (2020) 012402

Optimal strategies for individuals of different species to avoid competition for resources?
-evolutionary branching Sagitov, Mehlig, Jagers & Vatutin, Theor. Pop. Biol. 83 (2013) 145

Population genetics

-competition/speciation/game theory
-remains to be seen whether reinforcement learning can inform genetics/evolution

Multi-agent reinforcement learning
-efficient strategies for distributed search in fluctuating environments

28

Ravinet, Faria, Butlin, Galindo, Bierne, Rafajlovic, Noor, Mehlig & Westram,
J. Evol. Biol. 30 (2017) 1450

Busonio, Babuska & Schutter, IEEE Transactions on systems, Man &
Cybernetics C: Applications and Reviews 38 (2008)

Conclusions

Supervised learning with artificial neural networks was studied in the 40ies, 60ies, 80ies.
In the last few years: deep-learning revolution due to

- better training sets
- better hardware (GPUs, dedicated chips)

Unsupervised learning: learning without labels. Requires redundancy.

- clustering of high-dimensional data

- topographic maps

- non-linear projections

- self-organising maps in the visual cortex?

Reinforcement learning was developed in the 80ies and 90ies.
In the last few years: success due to better hardware and deep Q-learning.

- AlphaGo

- Multi-agent reinforcement learning
29

