

CS Group in-depth meeting

Control Systems, Department of Electrical Engineering

September 19, 2023

Scientific staff CS Group

Prof. Siep Weiland Spatial-temporal systems, model reduction

Prof. Paul Van den Hof Data-driven model learning in dynamic networks

Dr. Mircea Lazar Model predictive control, cyber-physical systems

Dr. Roland Toth LPV and nonlinear systems; machine learning and Al

Dr. Leyla Özkan Process control and electrification of processes

Dr. Tijs Donkers Dr Automotive systems, No energy management co

Dr. Maarten Schoukens Nonlinear modeling and control; machine learning and Al

Dr. Sofie Haesaert Data-driven modeling, control of cyber-physical systems of systems, Al

Dr. Zhiyong Sun Distributed coordination and networked control systems

Dr. Valentina Breschi Data-driven control, data-driven model learning for hybrid Systems, machine learning

Dr. Amritam Das Multi-physics systems, Physics-enabled learning for Control, Neuroengineering

Prof. Hans Butler (ASML) Mechatronic systems

Prof. Henk Jan Bergveld (NXP) Embedded control in energy management

2

What is Control?

- Making systems smart (intelligent...)
- Combining (multi)physical modeling with data-driven (machine) learning
- Implementing smart (optimization) algorithms
- Dealing with interconnected / networked / distributed / multi-agent systems
- On the interface between EE / ME / Math / ChemEng / CompSc
- Dominant in key industries: high-tech systems, automotive systems, energy systems, industrial production, robotics, drones
- Becoming more complex/challenging because of multiple sensing/actuation
- A key player in AI for Engineering Systems (new TU/e institute EAISI)
- Always providing terrific job opportunities

Research partners

TU/e

Control Systems of the future

- Involve highly complex systems that are interacting / communicating (over networks)
- Have important safety and operational constraints
- Require autonomy, adaptation and learning in uncertain environments, AI
- Combine: data analytics, communication, computation and control, building on system theory and system modeling
- Will balance between model-based control and data-driven control

EEE, Electric Power Grid Modernization Trends

Profiles & Research projects

Control Systems – Profiles

To help you choose your direction and associated education program, the CS group has created 4 profiles:

- Profile 1: Estimation & Control of Energy Storage & Conversion Systems
- Profile 2: Control of Autonomous and Connected Systems
- Profile 3: Digital Twinning and Data-Driven Learning
- Profile 4: Control and Learning of High-Tech Systems

Note: of course you can also compile your own education program.

Profile 1

Profile 1:

Estimation & Control of Energy Storage & Conversion Systems

Digital twinning, constrained control, and estimation for energy storage and conversion Systems

Key applications and domains:

- Battery management systems
- Complete vehicle energy management
- Flexible and Autonomous Model based Operation Support Technology

Keywords: Data and Information Driven Dynamic Modeling and Digital Twinning; Control; Estimation; Optimization methods; Model and Data-driven Predictive Control

Profile 1:

Estimation & Control of Energy Storage & Conversion Systems

Digital twinning, constrained control, and estimation for energy storage and conversion Systems

Some MSc projects examples:

- Model Predictive Control of Vehicle Charging Stations
- Experiment Design for parameter estimation of the Doyle-Fuller-Newman (DFN) model
- Computationally Fast Eco-driving and Energy management
- Energy-Management with Eco-driving using More-Detailed Road Information
- Self Optimizing Control for Thermal Systems

.....and many more!

Profile 1: Estimation & Control of Energy Storage & Conversion Systems

Digital twinning, constrained control, and estimation for energy storage and conversion Systems

Involved researchers:

Dr. Tijs Donkers Automotive systems, energy management

Dr. Mircea Lazar Model predictive control, cyber-physical systems

Dr. Leyla Özkan Process control and electrification of processes

Prof. Siep Weiland Spatial-temporal systems, model reduction

Prof. Henk Jan Bergveld (NXP) Embedded control in energy management

Profile 2

Profile 2:

Control of Autonomous and Connected Systems

Intelligent control and decision making in autonomous and connected systems

Key applications and domains:

- Cyber-physical systems
- Autonomous driving and platooning
- Distributed renewable energy systems
- Multi-robot platforms
- Multi-robot motion planning
- Networked robotics and drones
- Networked formation and flocking
- Sampled-data control
- Formal methods (fundamental & applications)

Keywords: Intelligent motion control; Formal methods; Model predictive and learning control; Distributed autonomous systems; Networked dynamic (control) systems; Distributed autonomy; Swarm intelligence; Hybrid systems

Profile 2: Control of Autonomous and Connected Systems

Intelligent control and decision making in autonomous and connected systems

Some MSc project examples:

- Autonomous flying and navigation of mini-drones via ChatGPT
- Automating control synthesis for an RC race car
- Safe On-Ramp Merging: A Multi-Agent Formation Control Approach
- Controller design methods for sampled-data and networked control systems
- Privacy Preserving Physics Informed Learning for City-Wide Traffic Network

System

.....and many more!

Profile 2: Control of Autonomous and Connected Systems

Intelligent control and decision making in autonomous and connected systems

Involved researchers:

Dr. Sofie Haesaert Data-driven modeling, control of cyber-physical systems of systems, AI

Dr. Zhiyong Sun Distributed coordination and networked control systems

Dr. Tijs Donkers Automotive systems, energy management

Dr. Amritam Das Multi-physics systems, Physics-enabled learning for Control, Neuroengineering

Profile 3

Profile 3: Digital Twinning and Data-Driven Learning

Modelling dynamic systems and data-driven learning for decision and control

Key applications and domains:

- High-Tech
- Autonomous Vehicles
- Power Electronics
- Power and Distribution Networks
- Industrial Processes
- Dynamic network applications

Keywords: Machine Learning; Data-Driven Modelling and Control; Modelling; Reinforcement Learning; Digital Twinning; Modelling Dynamics; Diagnostics; System Identification; Topology Identification

Profile 3: Digital Twinning and Data-Driven Learning

Modelling dynamic systems and data-driven learning for decision and control

Some MSc project examples:

- Data-driven model-augmentation and control of the Space Rider Vehicle
- Unveiling the dynamical behavior of networks of neurons with jump models
- Learning Neurophysiological Models of Human Brain
- Modelling for diagnostic of wafer scanners
- Printed Circuit Board (PCB) Testing
- Matlab toolbox development for dynamic networks

.....and many more!

Profile 3: Digital Twinning and Data-Driven Learning

Modelling dynamic systems and data-driven learning for decision and control

Involved researchers:

Dr. Valentina Breschi Data-driven control, data-driven model learning for hybrid Systems, machine learning

Dr. Roland Toth LPV and nonlinear systems; machine learning and AI

Dr. Maarten Schoukens Nonlinear modeling and control; machine learning, Al

Prof. Paul Van den Hof Data-driven model learning in dynamic networks

Dr. Amritam Das Multi-physics systems, Physics-enabled learning for Control, Neuroengineering

Profile 4

Profile 4:

Control and Learning of High-Tech Systems

Performance enhancement through control and learning

Key applications and domains:

- High-precision motion systems
- Additive manufacturing
- Applications on integrated mechanical
- Electrical
- Thermo-dynamical
- Optical
- Acoustic phenomena (lithography, electron microscopy, aerospace applications)
- Piezo actuation/sensing
- Learning control

Keywords: Mechatronic systems; multi-physical modeling; manufacturing systems; dealing with/managing complexity of spatial-temporal and nonlinear systems; parameter-varying systems

Profile 4: Control and Learning of High-Tech Systems

Performance enhancement through control and learning

Some MSc project examples:

- Physics Guided Neural Networks for Feedforward Control: Rotating 2 Mass-spring Philips system
- Integrated Wafer stage calibration (ASML)
- 3D printing for plastics, ceramics, food and concrete
- Learning-based motion control of wire bonders
- A proximity-based regularization strategy for data-driven predictive control of nonlinear systems
- Flexible mode regulation (POI control), Learning-based commutation

.....and many more!

Profile 4: Control and Learning of High-Tech Systems

Performance enhancement through control and learning

Involved researchers:

Dr. Valentina Breschi Data-driven control, data-driven model learning for hybrid Systems, machine learning

Dr. Roland Toth LPV and nonlinear systems; machine learning and Al

Dr. Mircea Lazar Model predictive control, cyber-physical systems

Prof. Siep Weiland Spatial-temporal systems, model reduction

Dr. Amritam Das Multi-physics systems, Physics-enabled learning for Control, Neuroengineering

Prof. Hans Butler (ASML) Mechatronic systems

Courses per profile

TU/e

CS profiles S&C – courses

	Quartile	Code	Responsible lecturer	Profile 1	Profile 2	Profile 3	Profile 4
Core courses							
Control Engineering	Q1/Q3	4CM00	Witvoet				✓
System theory for control	Q1	4CM10	Heemels	✓	✓	✓	✓
Modeling Dynamics	Q1	5CSA0	Weiland	✓	✓	✓	✓
Multibody and non-linear dynamics	Q2	4DM10	vd Wouw				
Stochastic processes, filtering and estimation	Q2	5SC29	Breschi	 ✓ 	✓	✓	✓
Supervisory control of cyber physical systems	Q3	4SC080	Reniers	✓	✓		
System identification	Q3	5SMB0	Schoukens	✓		✓	✓
Specialization courses							
Nonlinear Optimization	Q1	2DME20	Keijsper	✓			
Model Reduction	Q2	5LMA0	Weiland	✓		✓	✓
Control Principles for Engineering Systems	Q2	5SMC0	Haesaert		✓		
Bayesian Machine Learning and Inf. Proc.	Q2	5SSD0	de Vries			✓	
Model Predictive Control	Q3	5LMB0	Lazar	✓			
Robust Control	Q3	5LMC0	Das		✓		✓
Analysis and design of Networked Systems	Q4	4DM70	Steur		✓		
Hybrid Systems	Q4	4CM20	Heemels		✓		
Machine Learning for Systems and Control	Q4	5SC28	Schoukens			✓	✓
Elective courses							
Energy Management	Q2	5XWC0	Donkers	✓			
Optimal Control and Reinforcement Learning	Q2	4SC000	Guerreiro Tomé Antunes		✓	✓	
Advanced Motion Control	Q2	4CM60	Oomen				✓
Advanced Process Control	Q3	5LMG0	Ozkan	✓			
Physical and Data-Driven Modelling	Q3	4CM40	Tiels	✓		✓	✓
Model Predictive Control	Q3	5LMB0	Lazar		~		✓
Machine Learning for Systems and Control	Q4	5SC28	Schoukens	 ✓ 			

Profile 1: Estimation & Control of Energy Storage and Conversion Systems Profile 2: Control of Autonomous and Connected Systems Profile 3: Digital Twinning and Data-Driven Learning Profile 4: Control and Learning of High-Tech Systems

CS profiles EE – courses

	Quartile	Code	Responsible lecturer	Profile 1	Profile 2	Profile 3	Profile 4	Remarks
Core courses								
Modeling dynamics	Q1	5CSA0	Weiland	✓	 ✓ 	✓	✓	Must have
Complex Analysis	Q1	2DME30	Habets		 ✓ 		✓	Nice to have (choose 2)
Nonlinear Optimization	Q1	2DME20	Keijsper	✓				Nice to have (choose 2)
Statistical Signal Processing	Q1	5CTA0	Turco					Nice to have (choose 2) Choose elective Stochastic processes, filtering and estimation instead
Numerical methods in electrical engineering	Q1	5CPA0	de Hon					Nice to have (choose 2)
Specialization courses								
Control Principles for Engineering Systems	Q2	5SMC0	Haesaert	 ✓ 	 ✓ 	✓	✓	
System identification	Q3	5SMB0	Schoukens	~	 ✓ 	✓	~	
Elective courses								
Control Engineering	Q1/Q3	4CM00	Witvoet				~	
System theory for control	Q1	4CM10	Heemels					
Stochastic processes, filtering and estimation	Q2	5SC29	Breschi	✓	✓	✓	~	Not when Statistical Signal Processing has been chosen as a Core course
Model Reduction	Q2	5LMA0	Weiland	✓		✓	~	
Bayesian Machine Learning and Inf. Proc.	Q2	5SSD0	de Vries			~		
Energy Management	Q2	5XWC0	Donkers	✓				
Optimal Control and Reinforcement Learning	Q2	4SC000	Guerreiro Tomé Antunes		✓	✓		
Advanced Motion Control	Q2	4CM60	Oomen				~	
Advanced Process Control	Q3	5LMG0	Ozkan	✓				
Physical and Data-Driven Modelling	Q3	4CM40	Tiels	✓		✓	✓	
Model Predictive Control	Q3	5LMB0	Lazar	✓	✓		✓	
Robust Control	Q3	5LMC0	Das		✓		✓	
Supervisory control of cyber physical systems	Q3	4SC080	Reniers		✓			
Analysis and design of Networked Systems	Q4	4DM70	Steur		✓			
Hybrid Systems	Q4	4CM20	Heemels		~			
Machine Learning for Systems and Control	Q4	5SC28	Schoukens	 ✓ 		 ✓ 	✓	

Expectations

- You will be assigned to one of our mentors who will discuss your course program with you.
- Our mentors are:

Prof. Siep Weiland

Prof. Paul Van den Hof

Dr. Tijs Donkers

Monthly CS MSc workshop:

- Train your presentation skills
- Train your discussion skills
- Use your fellow students as sources of knowledge
- Get inspired by interesting guest speakers from the industry and get to know your possible future field of work

- Great support and regular supervision sessions.
- Large and diverse selection of internships and graduation projects to choose from
- Possibilities to present your thesis at a conference
- Reserved desk space within the group

- In April 2024 the <u>CS Match-making event</u> will take place to help you choose your internship and graduation project and connect you to your supervisor
- Group sessions with CS staff members of your choice:
 - Detailed information about their research area
 - Information about possible internships and master end projects
- One-on-one session with a staff member to discuss the project of your choice

What do we expect from you?

- Effort and commitment
- Select topics you really like
- Be efficient and plan to finalize on time
- Avoid having to do (multiple) exams during your project
- Develop yourself as a professional
- Put maximum value to your diploma

How to choose your specialisation?

- Control Systems (CS)
- Electromechanics and Power Electronics (EPE)
- Control Systems Technology (CST)
- Dynamics and Control (DC)

Q & A sessions