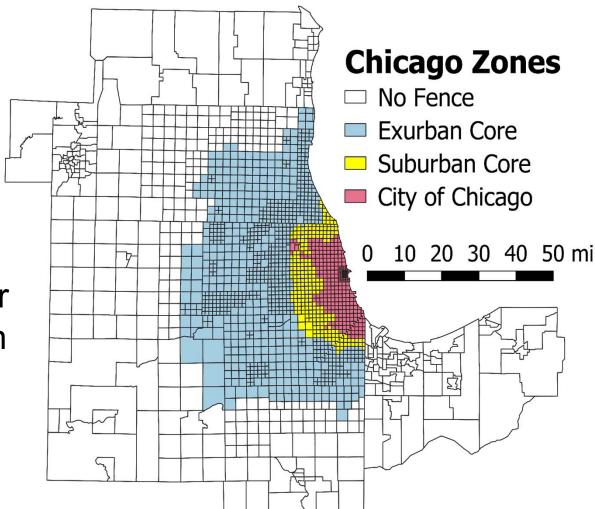
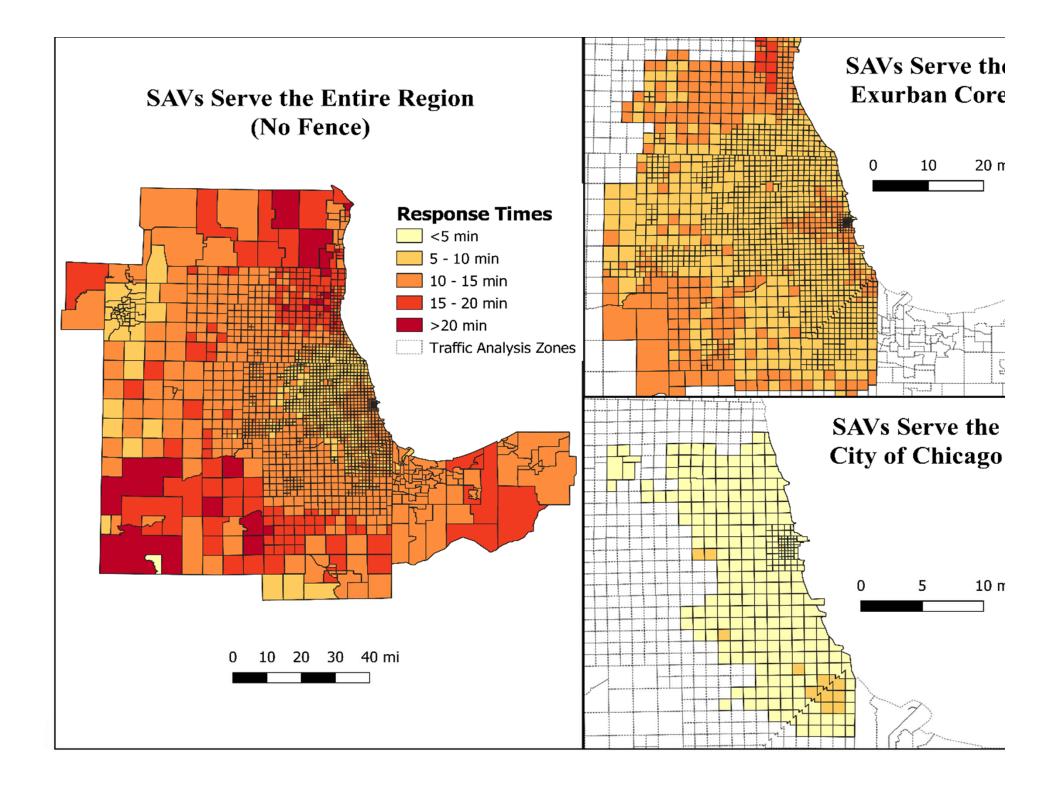


Large-Scale Shared AV Simulations with Geofences, Stop Aggregation, & Parking Restrictions

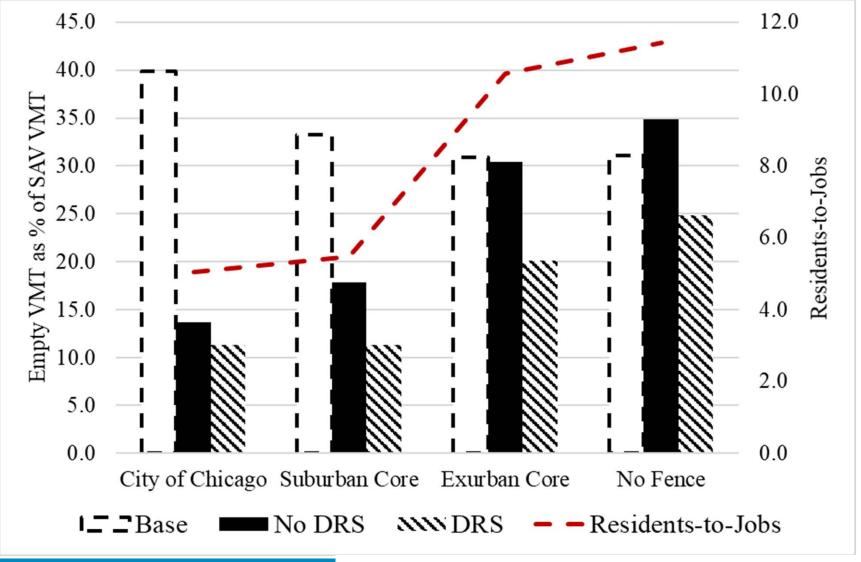
Kara Kockelman

University of Texas at Austin


with UT's Murthy Gurumurthy & Haonan Yan + ANL's Josh Auld


Case Study #1: 4 Chicago Geofences

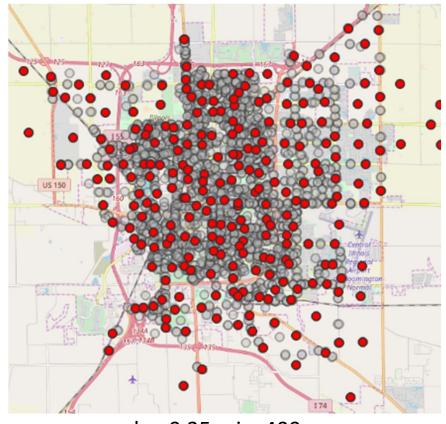
 Different
 population-tojobs ratios
 across


geofences.

- Pop/jobs ≈ 6 for City & Suburban Core.
- > 11 for wider region

%eVMT by Scenario

Note: Base Case = Ridehailing with conventional vehicles


Fencing Results

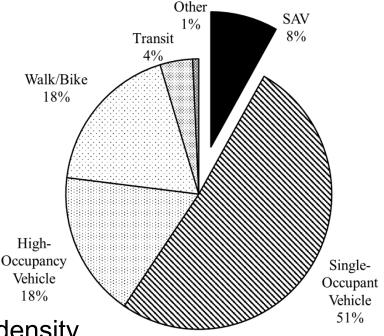
Assuming fewer cars desired per household, **just 1 SAV per 100 residents**, & \$0.50/mile SAV fares:

- Unfenced/full-region service has 11 min avg. response time + 35% (!) eVMT.
- Geofences help lower response times & eVMT, with greatest reductions within (sub)urban core.
- City-wide fence implies smaller than 1:100 fleet for comparable avg. trips served → non-linear fleet requirement.
- Avg. response times vary linearly with proximity to CBD.
- Dynamic ride-sharing (with strangers) lowers %eVMT by another 2-10%.
- Net VMT savings up to 5% (no DRS) & 9% (DRS) thanks to smaller fences.

Case Study #2: PUDOs in Bloomington

- Bloomington, Illinois
 - Just 74 sq. miles
 - 120,000 residents
 - 4,000 links + 2,500 nodes
 - About 2,800 unique locations
- POLARIS moves travelers between all O's & D's.
- PUDO stop clustering using pre-defined stop spacing, d_s → Equi-distant stops

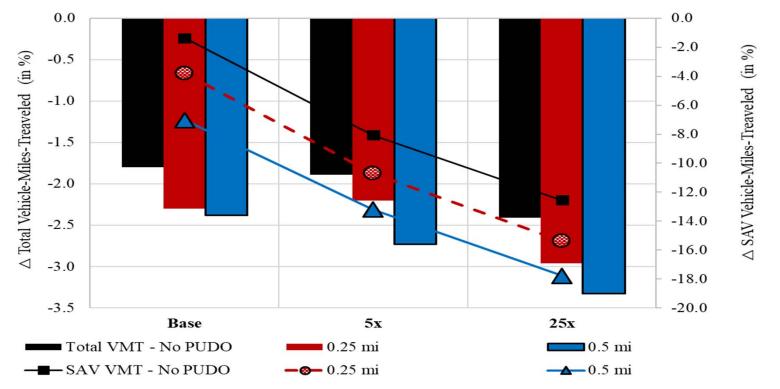
d_s = 0.25 mi = 400 m

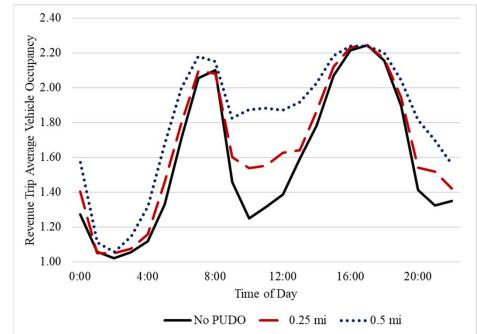


Scenarios

- Trip intensities: 100%, 500%, & 2500% to approximate a major city.
 - 25x provides about 15M trips/day or 8,500 persontrips per hour per sq. mile.
 - Travel times rise too, so mode splits need to be unchanged for ideal comparison.
- Fleet sizes scaled up, so each SAV serves 70 persontrips per day, on average.
- SAVs considered for match if < 10 min away.
- All travelers assumed willing to use DRS.
- DRS matching ends if > 5 min or 5% delay (vs. direct travel time).
- PUDO stop spacings of d_s = 0, 0.25, & 0.5 mile tested.

Results

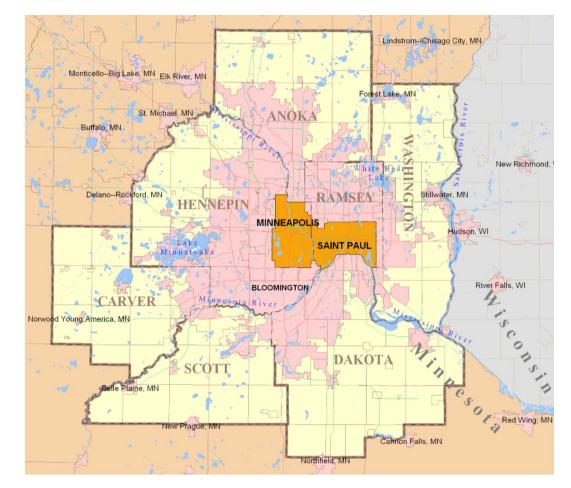

- 7-8% of trip-makers choose SAVs.
 - Between 48k (1x) to 1.2M (25x)
 trips served each day.
- Without DRS & PUDO Stops:
 - Average SAV serves 65 trips/day.
 - Travels approx. 430 mi/day (!)
 - % eVMT about 34% (!)
 - 2-5% lower eVMT with 5x & 25x trip density.
- With DRS (but no PUDOs):
 - 5 more trips/SAV/day, 19% eVMT, & 2% less total SAV VMT.
 - But longer response & travel times.


DRS + Stops

- Total VMT falls by 1 to 3%.
- SAV VMT savings of 10-20% possible, with more savings from 5x & 25x trip density than from stops.

Temporal Distribution of AVO

- PUDOs increase AVO & lower total VMT by aggregating low-density trips at off-peaks.
- Aggregating trips at offpeak times may be wise for benefits.
 - This minimizes walking disutility at other times of day to maintain overall SAV attractiveness.



Stop Aggregation Takeaways

- DRS does help lower congestion but really depends on travelers' willingness to be delayed.
- Higher trip density settings can lower total VMT.
- High parking prices can shift mode shares to SAVs & transit → boosting savings!
- Stops help marginally increase AVO & lower VMT assuming no disutility from walking.
- **Dedicated infrastructure** may be needed to accommodate **SAVs at stops**.
- Link characteristics (larger capacity & walkability) may be important for stop placement.

Case Study #3: SAV Parking Restrictions in the Twin Cities

- 9.5M person-trips/day across 7 MPO counties.
- MATSim used across
 325k links & 131
 nodes, ignoring
 external + trucks trips.

COLLABORATE. INNOVATE. EDUCATE.

Restricting Curb Idling

- 134 parking lots with 500-vehicle capacity along links with > 400 trip stops (O's & D's) per curb per day.
- SAVs dropping off pax at those curbs, seek closest parking lot. If no spaces are available at closet 2 lots, SAVs will idle at the curb.

MSP Parking Results

- Curb parking restrictions across 7 counties generated 8% more SAV VMT & 7% more eVMT on average.
- SAV work durations/run times rose 15%.
- # DRS trips fell 5%.
- Curb parking restrictions decreased DRS trips by 0.5%, while increasing wait times by 11% & 19% in the 7county & Twin Cities scenarios, respectively.

More Twin Cities Results

- Using 1:5 SAV-to-traveler fleet, eVMT averaged 7.2% to 14% of total VMT, with each SAV working 4.0 to 8.9 hours per day.
- Smaller fleet of 1:15 had higher eVMT 17 to 23% & running times ranging from 7.2 to 18 hr/day.
- Once **DRS** is offered, average response times fall 10%.
- Relative to the **7-county service area**, **Twin Cities simulations** averaged **25% more DRS trips** & **19% shorter wait times**.
- eVMT occurred mostly in neighborhoods with lower trip-end density & dispersed directions.
- Most SAV VMT & eVMT occur on freeways & highways across MSP region.
- Interestingly, MSP response times are similar across the region!

Thank you! Questions & Suggestions?

30+ CAV papers & reports at www.caee.utexas.edu prof/kockelman