Control Systems Technology

CST info for new master students 2021-2022

Maarten Steinbuch Maurice Heemels
Control Systems Technology

Disciplines
- systems and control theory
- mechanical design / mechatronics
- systems engineering

Applications
- advanced motion and high-tech systems
- robotics for care/cure/agro-food
- automotive power trains & smart mobility
- energy systems

KPIs:
- 50 PhDs
- 85 MSc/year
- 1,3 Journal/year
- 2,5 M€/year funding
CST People and subprogrammes

• Model-based Control, Learning Control, Identification and Design of Motion Systems

• Cyber-Physical Systems of Systems

• Robotics for Care, Cure & Agro-food

• Automotive Powertrains & Smart Mobility

• Energy Systems
CST’s mission:

Our mission is to develop new methods and tools in the area of Systems Theory, Control Engineering and Mechatronics.

The research focuses on understanding the fundamental system properties that determine the performance of mechanical engineering systems and on exploiting this knowledge for the design of the high-tech systems of the future.

Subprogrammes:

• Model-based Control, Learning Control, Identification and Design of Motion Systems
• Cyber-Physical Systems of Systems
• Robotics for Care, Cure & Agrofood
• Automotive Powertrains
• Control of fusion plasmas
Research disciplines

- Control of fusion plasmas
- Model-based control and identification systems
- Cyber-physical systems and systems engineering
- Mechanical design and robotics for care and cure
- Automotive powertrains
Research disciplines in a nutshell

Automotive powertrains & Smart Mobility
- To find a cost-efficient balance between drivability and energy-efficiency
- Technology, topology and control design for hybridization of automotive powertrains
- Automated driving / AGV
- Control of fusion plasmas
- Advanced control methods of ITER, a nuclear fusion reactor, for magneto-hydrodynamic instabilities and control of distribution of the current density in the plasma

Mechanical design and Robotics for care and cure
- Statically determined mechanical design of machines and instruments for robotic surgery systems and semiconductor industry
- Advance the state-of-the-art in robotics in health-related applications
- Investigating the cognitive abilities of domestic service robots
- World-class design of high-performance robots (MidSize Turtle, Amigo, Sofie, PRECEYES, Colibri, etc.)
- Control synthesis methods for haptic master-slave systems that can deal with uncertainty

Model-based control, learning and identification of motion systems
- Using multiple additional actuators and sensors to actively compensate for deformations in a future reticle stage (FFR in lab)
- Identifying models of complex high-order dynamics and massive MIMO systems for robust control
- Learning in machines: exploiting data-driven (machine) learning and models to (iteratively) learn to control to the limits of performance

Cyber-physical systems and Systems engineering
- Foundations for distributed control of physical systems over shared communication networks and resource-aware (event-triggered) control
- Fundamental developments in the area of hybrid systems that directly connect to the essential challenges in the NCS and CPS applications
- Supervisory control methods
Selecting a mentor

- Within 5 months each CST master student need to have a mentor
- Any scientific staff member can be a mentor
 - Excluding Maarten Steinbuch
 - Part-timers have (very) limited capacity
- Choose one and ask him/her if he/she wants to be your mentor
- Discuss courses, career stuff, other problems (your initiative)
- Mentor has to approve your list of courses
- Mentor has to sign your internship form (although mentor is not necessarily your internship supervisor)

INFORM the student coördinators and Secretary CST (CST@tue.nl) about your mentor
Selecting an internship

Student Coördinators: Aida Rashidinejad & Gerard van Hattum

CST@tue.nl

- Feel free to find an internship, but academic level needs to be appropriate
- List of “approved” (international) contacts available via the student coördinators
- Any scientific staff member can be an internship supervisor
- Find an internship supervisor with appropriate expertise for your internship subject
- Possibly discuss with mentor, internship supervisor (if you have one)
- Hard to find an appropriate internship? Contact the student coördinators and list what YOU already did to find an internship
- INFORM the student coördinators and your internship supervisor about your internship
- Send the scan of the signed internship form to secretary CST (CST@tue.nl)
Selecting a master final project

- ALL final projects are only available through CST scientific staff
- Do NOT contact companies etc. yourself to find an assignment!
- Find a thesis advisor (any scientific staff member)
- The student coördinators have a list of available MFPs (not complete)
- Thesis advisor may suggest a MFP
- Hard to find an appropriate MFP? Contact the student coördinators and list what YOU already did to find a MFP
- INFORM the student coördinators and thesis advisor about your MFP
- Send the scan of the signed MFP form to secretary CST (cst@tue.nl)
- Be aware that some scientific staff members may have all MFPs filled in at certain times and therefore cannot accept you for an MFP
- Be aware that your list of courses (esp. absence of certain courses) may be a reason not being accepted for an MFP
MSc degrees:

• Master Systems & Control
• Master Automotive Technology
• Master Mechanical Engineering (DSD/CST)
 • MSE – manufacturing systems engineering track
 • AIES – artificial intelligence for engineering systems track
 • Master Nuclear Fusion

Further practicalities:

• Mentoring program
• Projects: Guidance by project coaches, regular meetings (permanent) staff employee
Control engineering 4CM00
System theory for control 4CM10
Engineering Optimization 4DM20
Hybrid systems and control 4CM20
Supervisory control 4CM30
Advanced motion control 4CM60
Mobile robot control 4SC020
Optimal control and reinforcement learning 4SC000
Haptics – perception and technology 4SC040
Physical and data-driven modelling 4CM40
Applications of Design principles 4CM50
Advanced full-electric & hybrid powertrain design 4AT030
Advanced control for future HD powertrains 4AT070
Control and operation of tokamaks 4SC010
Control of magnetic instabilities in fusion plasmas 4SC030
Integrated system design 4CM70
Learning Control 4SC070
Extremum seeking control for data-based performance optimization 4CM80
Automotive systems engineering project 4AT100
Machine learning for multi-physics modelling and design 4AI000
Physical and data-driven modelling 4CM40
Summarizing

CST group unites
• Science and fundamental (control) theory
• Applied research & design
• Society / Spin-offs

Highest quality standards
• Two latest int. research evaluations. Excellent highest possible scores (quality, productivity, viability and relevance: 5555)
• Recent bibliometric evaluation 3TU. CWTS Univ. Leiden : Control Systems Technology stands out in terms of impact.
Further information

Secretary Nancy Wagemakers and Roos van Otterdijk,
GEM-Z-0.126, CST@tue.nl

https://maartensteinbuch.com/
www.heemels.tue.nl
https://www.tue.nl/en/research/research-groups/control-systems-technology/
https://www.linkedin.com/company/control-systems-technology-tue/?viewAsMember=true
Thank you for your attention