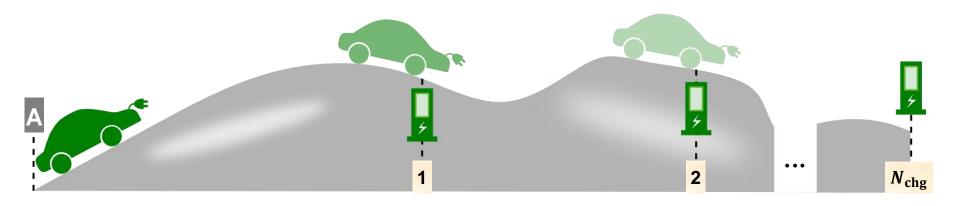
CHALMERS

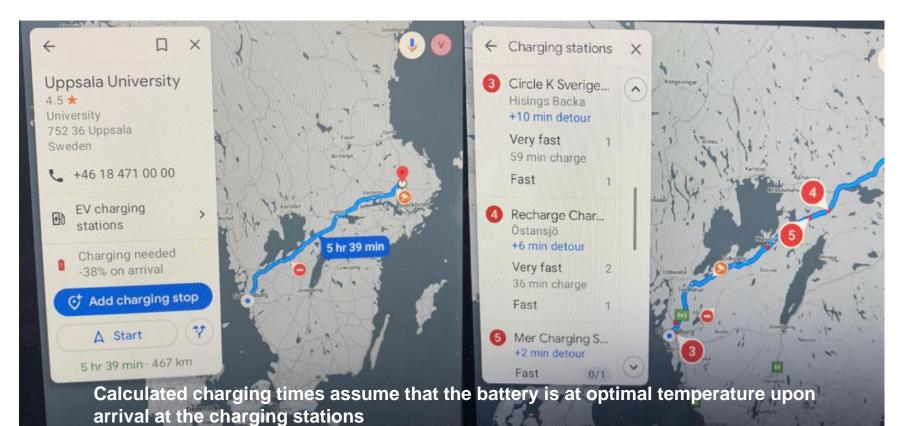
UNIVERSITY OF TECHNOLOGY

FAST CHARGING, THERMAL MANAGEMENT AND ECO-DRIVING OF BATTERY ELECTRIC VEHICLES

NIKOLCE MURGOVSKI

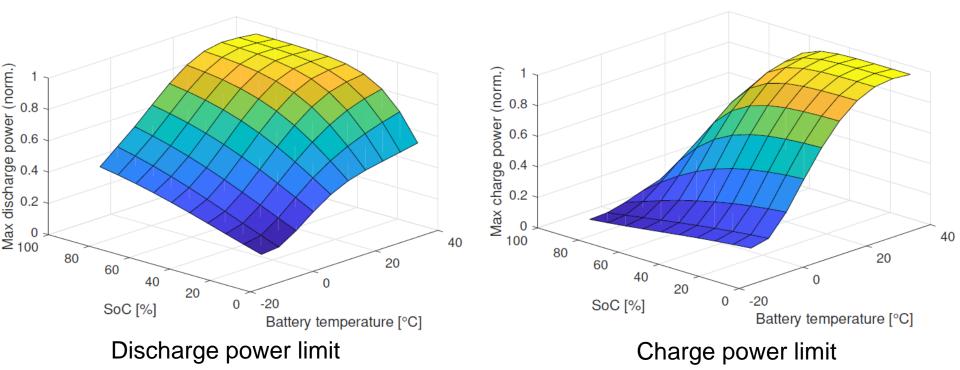

DIVISION OF SYSTEMS AND CONTROL DEPARTMENT OF ELECTRICAL ENGINEERING

2022-07-12


CHARGING AND TRIP PLANNING OF A BEV

- Route is longer than the BEV range.
- Charging stations allow fast charging.
- Ambient temperature could be low, e.g., -10 °C.

A VEHICULAR NAVIGATION SYSTEM IN A BEV

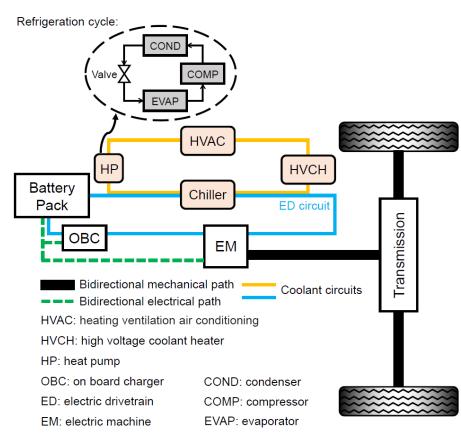

2 of 19

3 of 19

BATTERY POWER LIMITS

• Power limits depend on battery SoC and temperature.

NIKOLCE MURGOVSKI


4 of 19

BEV'S THERMAL SYSTEM

- Passive heat is generated due to battery and electric drive losses.
- Active heat is generated/removed by the
 - HVAC

CHALMERS

- HVCH
- Heat pump (HP)
- Heat is exchanged with the ambient air.

RESEARCH QUESTIONS

- Which chargers should be selected to avoid long stop-over times and high charging costs?
- How to pre-condition and manage the battery and the thermal system to improve energy efficiency and enable appropriate charging power in terms of
 - predicted thermal state of the battery,
 - knowledge on power capability of the charging stations,
 - given user preferences on cost and trip time?
- What are the benefits of the inclusion of a heat pump in the thermal management system?

OPTIMIZATION OBJECTIVE

- Minimize a cost function including:
- Driving cost
 - Driving time
 - Discomfort penalties
- Charging cost
 - Charging time
 - Charged energy
 - Overstay cost
- Detour cost on driving time and energy to a charging location

HYBRID DYNAMICAL SYSTEM

• Vehicle states and dynamics differ during driving and charging modes

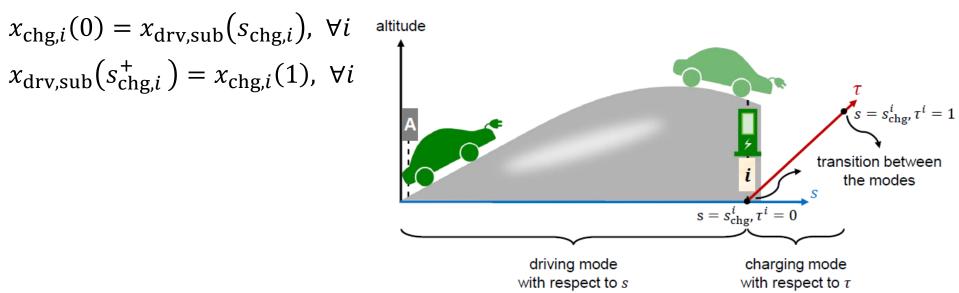
- $x_{drv} = [Vehicle speed, Battery SoC, Battery temperature]^T$
- $x_{chg} = [Battery SoC, Battery temperature]^T$
- Independent variables selected to reduce complexity

•
$$\frac{\mathrm{d}x_{\mathrm{drv}}(t)}{\mathrm{d}t} = f_{\mathrm{drv}}(x_{\mathrm{drv}}(t), u_{\mathrm{drv}}(t), t) \implies \frac{\mathrm{d}x_{\mathrm{drv}}(s)}{\mathrm{d}s} = v(s) f_{\mathrm{drv}}(x_{\mathrm{drv}}(s), u_{\mathrm{drv}}(s), s)$$

•
$$\frac{\mathrm{d}x_{\mathrm{chg},i}(t)}{\mathrm{d}t} = f_{\mathrm{chg}}(x_{\mathrm{chg},i}(t), u_{\mathrm{chg},i}(t), t) \implies \frac{\mathrm{d}x_{\mathrm{chg},i}(\tau_i)}{\mathrm{d}\tau_i} = t_{\mathrm{chg},i} f_{\mathrm{chg}}(x_{\mathrm{chg},i}(\tau_i), u_{\mathrm{chg},i}(\tau_i), \tau_i)$$

s is travelled distance $\tau_i \in [0, 1]$ is normalized charging time at each charge stop *i*.

A. Hamednia, N. Murgovski, J. Fredriksson, J. Forsman, M. Pourabdollah, V. Larsson. Optimal thermal management, charging, and eco-driving of battery electric vehicles. <u>https://arxiv.org/abs/2205.01560</u>



ENSURING CONTINUITY

• Define a sub-vector of overlapping states

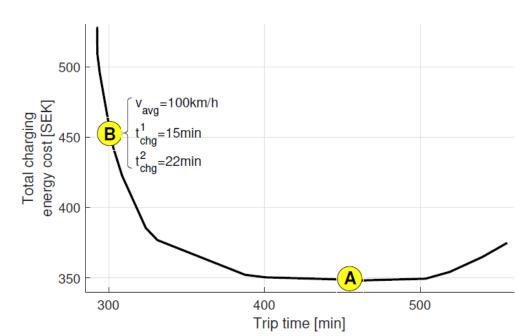
 $x_{drv,sub} = x_{drv(2:3)} = [Battery SoC, Battery temperature]^T$

Continuity ensured via constraints:

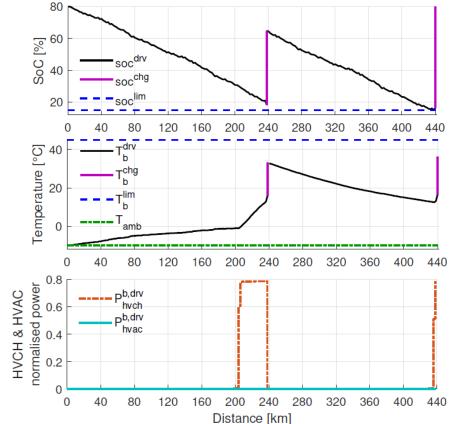
OPTIMIZATION PROGRAM

- The problem translates to an MINLP with:
- control inputs
 - $u_{drv} = [HVCH power, HVAC power, HP power, EM torque]^T$
 - $u_{chg,i} = [HVCH power, HVAC power, HP power, Grid power]^T$
- binary variables
 - $b_i = \{$ Skip charger, Use charger $\}$
- scalar variables
 - $t_{chg,i} = charging time at charger i$

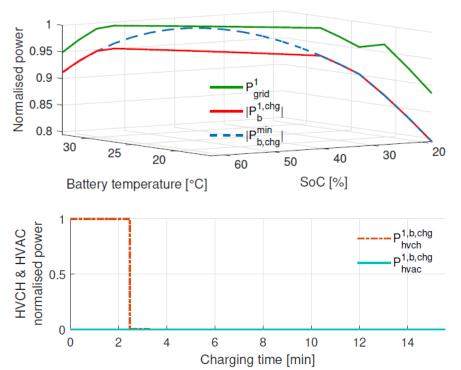
10 of 19


CASE STUDY 1

- Heat pump disabled
- Eco driving enabled
- 440 km long road with a hilly terrain
- Ambient temperature at -10 °C
- Stop at 2 fast charging stations (150 kW), one at 240 km and another at the 440 km


THE PARETO FRONTIER

- Point A is the most energy efficient trip
 - Energy is not further decreased by reducing average speed to below about 70 km/h
- Point B is more interesting.
 - Let us look into more details.

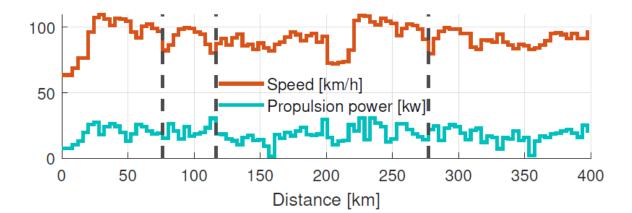


ECC 2022, LONDON

RESULTS WITH ACTIVE HEATING AND COOLING

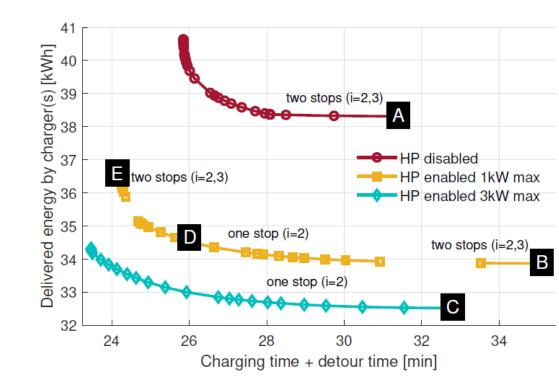
Grid, battery and HVCH power at the 240 km charger

SUMMARY OF RELEVANT FINDINGS

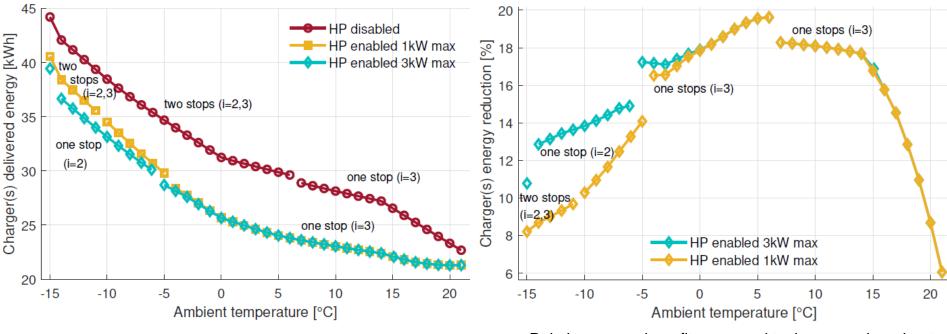

- Active heating is turned on just before and at the beginning of the charging
 - Preconditioning the battery from start is less energy optimal
- Charged energy at the intermediate charger is just enough to reach the destination
- Charging time is reduced by more than 40% when active heating is enabled
- Driving slower may sometime save you time!
 - Eco-driving may avoid the need for stopping at a charger

14 of 19

CASE STUDY 2


- Eco driving disabled
- Heat pump enabled, with power limits of 1 kW or 3 kW
- Three charging locations, and the vehicle decides where to stop
- Ambient temperature varied from -15 °C to 22 °C

CHALMERS


PARETO FRONTIER FOR -10 °C

- The pareto frontier can be discontinuous.
- Case D: a trade off solution.
 - Consider the associated penalty factors on time and energy and check impact from ambient temperature

CHALMERS

RELATIVE ENERGY BENEFIT COMPARED TO THE CASE WHERE HEAT PUMP IS DISABLED

Relative energy benefit compared to the case where heat pump is disabled

17 of 19

SUMMARY OF RELEVANT FINDINGS

- A heat pump can provide more than 10% (and up to 20%) energy saving for temperatures between -5 °C to 18 °C
 - Even with a 1 kW heat pump
- Charging + detour time can be reduced by up to 30% at 0 °C compared to the case when the heat pump is disabled
- Minimum number of charging stops is favorable, regardless of user priorities on time or energy
- If charging is unavoidable, then selecting the furthest reachable charger reduces energy losses
 - Especially at low ambient temperatures

WHAT COMES NEXT

- Development of a computationally efficient, real-time implementable solution.
- Development of a suitable user interface.
- Robust solutions when predictive information is uncertain, e.g., availability of high charging power.
- Distributed trip planning for a vehicle fleet.
- Pricing mechanisms for EV charging to minimize charging station congestion, underutilization of charging stations and optimize powerpeak shaving at the charging facilities.

THANK YOU

Ahad Hamednia

Chalmers

Jonas Fredriksson Chalmers

Viktor Larsson

Volvo Cars

Mitra Pourabdollah

Volvo Cars

19 of 19

Jimmy Forsman

Volvo Cars

Victor Hanson Chalmers

Jiaming Zhao Chalmers

CHALMERS

UNIVERSITY OF TECHNOLOGY