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Calibrate Controller to Satisfy Specifications for System
Recursive controller calibration algorithm

Main idea: Kalman filter estimating controller parameters
➞ Controller parameters can be: MPC cost function (weights), 

➞ PID gains, filter coefficients, Neural Network weights, …

Control law with parameters !
"! = $" %! , '!

Automated Controller Calibration
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! Control parameter
"! Control input
%! Measured states of dynamical system
'! Internal controller states, e.g., integrator, state estimate
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Objective: Find control parameter update law
!!#$ = !! + Δ!!

Automated Controller Calibration
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Control law with parameters ! "! = $" %! , '!
Model-based calibration %!#$ = * %! , "! + +!
Specification function ℎ ! = - %!%&:! , "!%&:!
Desired values ℎ()*,!
Training objective ℎ()*,! − ℎ ! ,!"#

Control parameter adaptation as estimation problem 
with priors !!#$

-(./( ∼ 0 !! , 1" and ℎ()* ,! ∼ 0 ℎ !! , 10

Control parameters from posterior distribution
2 !!#$|!! , !!%$, … , !1, ℎ()* ,! , … , ℎ()* ,1
= ∏231

! 2 !2#$|!2 , ℎ()* ,2 2 !1
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Automated Controller Calibration
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Calibration applied to different controllers
– State feedback:  Gains

– Optimal control:  Cost function weights

– PID:  Gains

– H∞:  Filter coefficients of pre- and post-

compensator

– Sliding mode controller:  Gains and sliding 

surface

– Dynamic output feedback:  Feedback gains 

and Luenberger observer gains

– Neural Network:  Weights

Performance:

Fast convergence

speedup > 95% vs. 

vanilla Bayesian opt. 
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Kalman filter estimates parameters
Calibration driven by specifications

– Model-based approach

➞ Little data needed

– Recursive implementation

➞ Low hardware requirements

CarSim – Lane Change Controller

Automated Controller Calibration for Vehicle Control
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Degrees of freedom for controlling battery electric vehicles
i. Transmission gears

ii. Torque-split ratio between motors  

iii. Velocity profile, e.g., for adaptive cruise control 
or autonomous driving

Approach for real-time efficiency optimization
– Learn model suited for numerical optimization using kernel 

regression

– Combine motor losses (from tabulated data of motor efficiency) 

with driving losses (from Newtonian mechanics)

Kernel Regression for Energy-Optimal Control of EVs
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Challenges
– Fast control algorithms needed

– Mathematical model (cost function) must have flexible shape 

Efficiencies between 
60% – 90%  

o Efficiency data points

Fit continuous 
function
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Pseudo-Convex Cost Function for Velocity Profile Optimization
Combined minimization of driving losses and motor losses

Kernel Regression for Energy-Optimal Control of EVs
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Lmotors(v,a)=0

EV loss function LEV(v,a)
LEV(v,a) = Ldriving(v) + Lmotors(v,a)

Ldriving(v) = v(Fdrag(v) + Froll(v))

Exceeded region of 
regenerative braking

Exceeds physical 
acceleration limit

Transition from 
motor 1 to motor 2

Transition from 
motor 1 to motor 2

July 2022
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Design (Motor Size) Optimization
Fixed Vehicle Torque/Speed Demand from Urban Dyno Driving Schedule (UDDS) and US06

Motor 1 with max. power P1 = 200kW – P2 
Motor 2 with max. power P2
➞ P2 = 0 implies EV with 1 motor

Advantages of Asymmetric Electric Motor Sizes
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Ba
tte

ry

EM1

EV with 2 motors (peak power 170kW, 30kW) saves 
30% energy for UDDS, compared to EV with 1 motor 

Ba
tte

ry

EM1

EM2

vs.

Torque-split Control (fixed gear)
Tvehicle = TEM1 + TEM2

Same as 4 equal in-wheel 
EMs, T1=T2=T3=T4

Same as 2 equal in-wheel in front, 
2 equal in-wheel EMs in back
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Energy Savings of Adaptive Cruise Control (ACC)
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Energy-Optimized Adaptive Cruise Control (ACC)

Savings of 2-motor (170kW, 30kW) 
compared to 1-motor (200kW)

– 30%/18% for UDDS/US06 with torque split

– Additional 3–10% with velocity profile 

optimization, e.g., for ACC

Average velocity of leading 
vehicle over horizon of x sec
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Human-Adaptive Motion Planning 
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Personalizing Driving Experience of Autonomous Vehicle
Model-based Learning: Keep Safety Guarantees, Learn Performance Parameters

– Fixed: Motion model, driving limits, computational structure

– Parametrized: Driving objectives, relative importance of objectives
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Human-Adaptive Motion Planning 

15

Personalizing Driving Experience of Autonomous Vehicle 

Parametrized driving objectives
➞ similarities of planner & driver

– Lateral accelerations and 

velocities of planners 

match drivers

Fixed model-based algorithm 
➞ safety properties

– Planners avoid exceeding 

speed limit 

(drivers often exceeded 

speed limit)

– Planners track centerline 

more closely than drivers
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Adapting ADAS using Vehicle Data and 
Crowdsourced Data

– Vehicle data for driver-specific adaptation

– Crowdsourced data for 

environment/location/time-specific adaptation

➞ driving scenarios that impact all drivers

Fundamental Idea
Exploit Population Data and Vehicle Data 

– Use data set for population in all locations

e.g., stored in cloud (unlabeled/anonymous)
– Use data set for population in specific location

e.g., stored in cloud (unlabeled/anonymous)
– Use data set for driver in all locations

stored only in vehicle (labeled)
– Predict behavior for driver in specific location 

and use for adapting ADAS

Vehicle Calibration from Population Data (Crowdsourcing)

18July 2022



© MERL

Prediction-making using percentiles and ranking assumption

For global data
Compare rank of driver, 62, w.r.t. population, 624

6%4|6 = 74|6
%$ 62

624 = 74 6%4|6

For specific location
Compare rank of driver, 624|6,7, w.r.t. population, 624|7

6%4|6,7 = 74|6,7
%$ 62

624|7 = 74|7 6%4|6,7

To predict 74|6,7, we use  624 = 624|7 (ranking assumption)
%4|6,7
-()8 = 74|7

%$ 74 74|6
%$ 62

Repeat prediction step for 62 = 1%,… , 99%

Prediction using Empirical Cumulative Density Functions

74|6,7 is unknown

➞
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Calibration of Automated Emergency Braking
– Based on driving style of drivers

– Based on road surface condition

Simulation Setup
Given: 74, 74|6
Collected over time: 74|7 (data samples collected is x axis)

Results
– Fast separation of different environmental conditions 

(e.g., icy, dry, rainy) with less than 10 data points

– Fast separation of driving styles (e.g., cautious, average, 

aggressive) with as little as 10 data points

– Robust separation of environment and driving styles 

within 100 data points

Interpretation of ranking assumption in this study
– Cautious driver on asphalt is predicted to be cautious on snow

– Aggressive driver on asphalt is predicted to be aggressive on snow

Simulation Results using SUMO

Driving on asphalt
; = 0.9

Driving on snow
; = 0.4

How quickly can we make accurate predictions?
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