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Data-driven battery 
health diagnostics
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• Why do we care?
• Why is it so difficult?
• Existing methods

The challenge of state of health estimation from field data

Outline
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• Why do we care?
• Why is it so difficult?
• Existing methods

The challenge of state of health estimation from field data

• Gaussian process regression and equivalent circuit models
• SOH diagnosis in PV-connected batteries in sub-Saharan Africa
• Parameterisation of more complex models using drive cycle data

Our approach: joining model- and data-driven methods

Outline



Batteries are a lot like people: they need looking after
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Estimating SOH from field data is difficult
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this is not CC-
CV charging

what happened 
here?

Lead-acid battery data from BBOXX Ltd.
Pictures: Antti Aitio, Pixabay



Existing methods of battery health diagnosis
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The model/observer-based approach for SOH diagnosis is common
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Li-ion Battery

Battery Model
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‘Pure’ data-driven methods work but may struggle to generalize
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Use non-linear mapping from operating data to SOH
Flexible – but can it generalize?

Richardson, R.R. et al. (2017) 
Richardson, R.R. et al. (2018).

Li et al. (2021) 



Combining data- and model-driven frameworks

14



Our initial attempts to estimate model parameters gave noisy results

Dealing with ECM parameter dynamics and their inherent instability
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ECM Parameters, e.g. resistance are functions (SOC, T, I..)
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Video: Antti Aitio



GPs are a principled, flexible Bayesian approach for estimating functions
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GPs are a principled, flexible Bayesian approach for estimating functions
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However, there is a ‘big-n’ problem with GP regression

Predictive distribution for new inputs !∗ has a closed form solution!

To optimise hyperparameters, maximise log marginal likelihood:

20

! ∈ ℝ&×& !!



21

A Gaussian process is a solution to a stochastic 
differential equation (Särkkä, Solin et al. 2013)

The solution to a linear SDE with Gaussian noise 
is found using the Kalman Filter & RTS smoother

A recursive approach can tackle upscaling



Overall pipeline for battery health from field data
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'diagnostics’ ‘prognostics’

Aitio and Howey (2021)



Model the battery series resistance with a Gaussian process

Battery model:
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Aitio and Howey (2021)



Model the battery series resistance with a Gaussian process

GP Kernel functions:
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Fitting the Gaussian process to data

Problem ends up looking rather familiar!

Discretize ‘non-time’ dimensions x using k-means

Estimate maximum a posteriori (MAP) hyperparameters 
(length scales, magnitudes) using forward pass to 
calculate “energy function”

Use backward pass to get GP posteriors for all batteries
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‘battery dynamics’

‘parameter dynamics’

Figures reprinted from Aitio and Howey, Joule 5(12):3204-3220, 2021



From field data, learn the dependence of RS on SOC, T, I, t
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unit sent 
for repair

Voltage data: BBOXX; Video: Antti Aitio



To predict failure, train a classifier with independent validation data
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Stress factors, i.e. cumulative:
• Age
• Charge throughput
• Cycles
• Mean temperature
• Mean voltage
• …

+ Classifier
aging model:

SOH estimates of 
~1200 batteries
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Population-wide results show the importance of calibration
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Figures reprinted from Aitio and Howey, Joule 5(12):3204-3220, 2021



Data- and model- driven SOH estimation methods have strengths and weaknesses – we should take 
aspects from both paradigms to get the best of both worlds

Simple empirical models extended with Bayesian ML methods offer robustness when using field data

We can extend the concept! 

fleet-level data offer a prior mean for new cells?
battery parameters co-evolve – partial charge / discharge data to estimate capacity?

Summary
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Model-driven Data-driven

Insight
Interpretability
Reliability of extrapolation

Flexibility
Fewer battery 
parameters required

The ‘Grey box’ approach



A quick advert for a couple of papers…
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Aitio & Howey, Joule 5(12):3204-3220, 2021Sulzer, Mohtat et al. Joule 5(8):1934-1955, 2021



Outlook: Data availability, model parsimony and scaleup are open issues
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david.howey@eng.ox.ac.uk @davidhowey
http://howey.eng.ox.ac.uk 

Pictures: Sam Greenbank, BBOXX

1. Data-driven approaches 
are only as good as the 
available data!

2. There should be more focus 
on the need for simple but 
interpretable models

3. Scaleup is a difficult, and 
many companies are still 
not convinced about the 
financial benefits of these 
approaches

Life: 3-5 
years

Data rows: 1 
million


