Data-driven battery health diagnostics

David Howey, Antti Aitio University of Oxford david.howey@eng.ox.ac.uk

ECC Workshop, Future Automotive Systems, July 2022

Outline

The challenge of state of health estimation from field data

- Why do we care?
- Why is it so difficult?
- Existing methods

Outline

The challenge of state of health estimation from field data

- Why do we care?
- Why is it so difficult?
- Existing methods

Our approach: joining model- and data-driven methods

- Gaussian process regression and equivalent circuit models
- SOH diagnosis in PV-connected batteries in sub-Saharan Africa
- Parameterisation of more complex models using drive cycle data

Batteries are a lot like people: they need looking after

Mechanically fragile

Pictures: Rob Richardson, Wikimedia commons, Adrien Bizeray, Christoph Birkl

Estimating SOH from field data is difficult

Existing methods of battery health diagnosis

The model/observer-based approach for SOH diagnosis is common

'Pure' data-driven methods work but may struggle to generalize

- Use non-linear mapping from operating data to SOH
- Flexible but can it generalize?

Combining data- and model-driven frameworks

Our initial attempts to estimate model parameters gave noisy results

• Dealing with ECM parameter dynamics and their inherent instability

٢

ECM Parameters, e.g. resistance are *functions* (SOC, T, I..)

Battery Intelligence

GPs are a principled, flexible Bayesian approach for estimating functions

۲

GPs are a principled, flexible Bayesian approach for estimating functions

However, there is a 'big-n' problem with GP regression

• Predictive distribution for new inputs X_* has a closed form solution!

 $\mu^* = k_* [K + \sigma_n^2 I]^{-1} (y - m(x)),$ $\mathbb{V}^* = k(x^*, x^*) - k_* [K + \sigma_n^2 I]^{-1} k_*^T$

• To optimise hyperparameters, maximise log marginal likelihood:

$$\log p(y|X,\theta) = -y^T [K_{\theta} + \sigma_n^2 I]^{-1} y - \frac{1}{2} \log |K_{\theta} + \sigma_n^2 I| - \frac{n}{2} \log 2\pi$$

 $K \in \mathbb{R}^{n \times n} !!$

A recursive approach can tackle upscaling

• A Gaussian process is a solution to a stochastic differential equation (Särkkä, Solin et al. 2013)

• The solution to a linear SDE with Gaussian noise is found using the Kalman Filter & RTS smoother

Overall pipeline for battery health from field data

Model the battery series resistance with a Gaussian process

8 $1.5 \cdot$ 4Value count $1.0 \cdot$ Battery model: $\mathbf{2}$ $0.5 \cdot$ 2 $V_{t} = V_{0}(z_{t}) + R_{0}(\zeta_{t}, u_{t}, z_{t}, T_{t})u_{t} + \varepsilon , \ \varepsilon \sim \mathcal{N}(0, \sigma_{n,t}^{2})$ -0 $10 \ 11 \ 12 \ 13 \ 14 \ 15 \ 16$ -3-2-112 18 24 30 36 42 48 0 2 3 Voltage (V) Current (A) Temperature (°C) $R_0 \sim \mathcal{GP}(0, k(\mathbf{x}, \mathbf{x}'))$, $\mathbf{x} = [\zeta \ u \ z \ T]$ Sampling time log count 10_2 10_2 10_2 10^{7} 10^{7} 10^{5} 10^5 10^{3} 10^{3} 5001000 5001000 5001000 0 0 0 Sampling time (s) Sampling time (s) Sampling time (s)

V

 $\times 10^8$

 $\times 10^{7}$

Aitio and Howey (2021)

0

 $\times 10^7$

Model the battery series resistance with a Gaussian process

• GP Kernel functions:

 $k_{\mathbf{x}}(\mathbf{x}, \mathbf{x}') = k_{\zeta}(\zeta, \zeta') + k_{\mathbf{x}_{OP}}(\mathbf{x}_{OP}, \mathbf{x}'_{OP})$ $k_{\zeta}(\zeta, \zeta') = \sigma_{f,0}^{2} \left(\frac{\min^{3}(\zeta, \zeta')}{3} + |\zeta - \zeta'|\frac{\min^{2}(\zeta, \zeta')}{2}\right)$ $k_{\mathbf{x}_{OP}}(\mathbf{x}_{OP}, \mathbf{x}'_{OP}) = \sigma_{f,1}^{2} \exp\left(-\frac{1}{2}(\mathbf{x}_{OP} - \mathbf{x}'_{OP})\Sigma^{-1}(\mathbf{x}_{OP} - \mathbf{x}'_{OP})^{T}\right)$

Fitting the Gaussian process to data

From field data, learn the dependence of R_S on SOC, T, I, t

To predict failure, train a classifier with independent validation data

Battery Intelligence UNIVERSITY OF OXFORD

Population-wide results show the importance of calibration

Benchmark results are not smooth

This is due to widely varying field conditions

Figures reprinted from Aitio and Howey, Joule 5(12):3204-3220, 2021

Summary

 Data- and model- driven SOH estimation methods have strengths and weaknesses – we should take aspects from both paradigms to get the best of both worlds

- Simple empirical models extended with **Bayesian** ML methods offer robustness when using field data
- We can extend the concept!

fleet-level data offer a prior mean for new cells?
battery parameters co-evolve – partial charge / discharge data to estimate capacity?

A quick advert for a couple of papers...

CellPress

Joule

Perspective

The challenge and opportunity of battery lifetime prediction from field data

Valentin Sulzer,¹ Peyman Mohtat,¹ Antti Aitio,² Suhak Lee,¹ Yen T. Yeh,³ Frank Steinbacher,⁴ Muhammad Umer Khan,⁵ Jang Woo Lee,⁶ Jason B. Siegel,¹ Anna G. Stefanopoulou,¹ and David A. Howey^{2,7,*}

SUMMARY

Accurate battery life prediction is a critical part of the business case for electric vehicles, stationary energy storage, and nascent applications such as electric aircraft. Existing methods are based on relatively small but well-designed lab datasets and controlled test conditions but incorporating field data is crucial to build a complete picture of how cells age in real-world situations. This comes with additional challenges because end-use applications have uncontrolled operating conditions, less accurate sensors, data collection and storage concerns, and infrequent access to validation checks. We explore a range of techniques for estimating lifetime from lab and field data and suggest that combining machine learning approaches with physical models is a promising method, enabling inference of battery life from noisy data, assessment of second-life

Context & scale

To enable the transition to a clean economy and ensure confidence in energy storage technologies, advances are required in reliability, safety, and extended usage of batteries. While headline-grabbing improvements have been made in battery materials, significant advances may also be achieved in managing behavior via enhanced modeling and real-time sensing. These are

Joule

CellPress

Article

Predicting battery end of life from solar offgrid system field data using machine learning

Antti Aitio, David A. Howey david.howey@eng.ox.ac.uk

Highlights Off-grid solar-battery systems provide clean electricity to millions of people

Battery replacement can be difficult due to remoteness

We demonstrate non-invasive estimation of battery health from field data

We estimate end-of-life probability with 82% accuracy from 1,027 batteries

Sulzer, Mohtat et al. Joule 5(8):1934-1955, 2021

Aitio & Howey, Joule 5(12):3204-3220, 2021

۲

Outlook: Data availability, model parsimony and scaleup are open issues

- Data-driven approaches are only as good as the available data!
- There should be more focus on the need for simple but interpretable models
- 3. Scaleup is a difficult, and many companies are still not convinced about the financial benefits of these approaches

Life: 3-5 years Data rows: 1 million

david.howey@eng.ox.ac.uk http://howey.eng.ox.ac.uk

🥑 @davidhowey

Pictures: Sam Greenbank, BBOXX

