

CWTe 6G Symposium

Sept 15, 2023

Next generation of efficient 6G power amplifiers

Fred van Rijs

Content

- The need for energy/power efficiency
- Overview current BST systems
 - Technology trends
 - PA concepts
- State of the art PA efficiencies
- Summary

The need for energy/power efficiency

- Telecommunication infrastructure accounts now for 2-3% of total global energy consumption.
- Data efficiency is increasing (bits/Joule) but with increasing data capacity targets of 5/6G the number of basestation increases more rapidly.
- This could lead to 20% of global energy consumption of CT in 2030.

The need for energy/power efficiency

• Power amplifier is one of the main contributors to total BST power consumption.

From white paper Ericsson

Smart and connected - the communication of tomorrow with 5G

Current systems from PA perspective.

Sub 6GHz systems:

- Macro BST:
 - Psat 300-1000 W
- mMIMO:
 - Psat: 30-100 W
- Small cells:
 - Psat: < 10 W

(3300-4200 MHz)

Currently

Typical modern 4/5G macro base station amplifier:

600 W LDMOS packaged asymmetric Doherty power transistor for base station applications at frequencies from 1930 MHz to 1995 MHz.

Table 1. Typical performance

Typical RF performance at T_{case} = 25 °C in an asymmetrical Doherty production test circuit. V_{DS} = 30 V; I_{Dq} = 1060 mA (main); $V_{GS(amp)peak}$ = 1.0 V, unless otherwise specified.

Test signal	f	V _{DS}	P _{L(AV)}	G p	ηם	ACPR
	(MHz)	(V)	(W)	(dB)	(%)	(dBc)
1-carrier W-CDMA	1930 to 1995	30	112	15.5	48.5	-34 [1]

Main-stream technologies:

- 1. LDMOS and GaN semiconductor technology
- 2. Doherty PA concept

Device technologies

LDMOS

GaN-HEMT

	Si-LDMOS	GaN HEMT
Supply voltage (V _{dd})	30 V	50 V
Power-density (P _{dens})	1.5 W/mm	9 W/mm
Peak Efficiency	70%	80%
Output capacitance (C _{ds})	0.18 pF/W	0.04 pF/W
RF Bandwidth FOM ($\propto \frac{1}{V_{dd}^2 C_{ds}}$)	1	1.6

AMPLEON Amplify a Sustainable Future

Doherty PA concept.

Doherty PA to increase efficiency in back-off. Essential for modulated signals.

W. H. Doherty, "A new high efficiency power amplifier for modulated waves", *Proc. IRE*, vol. 24, no. 9, pp. 1163-1182, 1936.

Theoretically, with peak efficiency of 78% and 8dB PAR:

- The average efficiency in class-B: 35%
- With Doherty concept (asym) : 60%
 In practice, with new requirements, the limits of Doherty becomes visible.

Interesting new PA concepts

Two approaches:

(1) Combinations of existing concepts e.g.

- Doherty-Chireix concept
- Doherty-voltage modulation concept
- Load modulated balanced PA

(2) Digital intensive PA's (RF-DAC)

Tudelft, IMS2020, R.J. Bootsman, et al. "An 18.5 W fully-Digital Transmitter with 60.4% Peak System Efficiency."

Efficiency trade-offs

 $\eta_{LU} = \eta_{peak} \; \eta_{mod} \; \eta_{driver} \; \eta_{iso}$

η_{peak}	: peak efficiency	LDMOS: GaN:	0.7 0.8
η_{mod}	: average efficiency	Class-AB: Doherty:	0.4 0.7
η_{driver}	: including drivers	Typical:	0.95
η_{iso}	: isolator losses	Typical:	0.93

0.5

lypical:

: total LU efficiency

 η_{LU}

Massive MIMO system trends on PA-level

- Per PA less output power is required.
- Move to higher frequencies
- Much larger <u>bandwidth</u> required
- More digital pre-distortion friendly: <u>linearity</u>

iBW	100 MHz	200 MHz	400 MHz	400 MHz	600 MHz	800 MHz
#T/total Pout	120 W	240 W	320 W	400 W	600 W	640 W
32T		7.5/75	10/100	12.5/125	18.7/187	20/200
64T	1.9/19	3.8/38	5/50	6.3/63	9.4/94	10/100
128T					4.7/47	5/50
256T						2.5/25

State of art PA efficiencies

• Technologies needed depends very much on required power levels (from ETH PA Survey).

Theoretical efficiency limit

Max efficiency: second harmonic

Efficiency performance vs frequency

- Slow decline of efficiency vs frequency (left).
- Results confirmed by data from literature (right).

Efficiency performance extended to THz frequencies for GaN

• There seems to be a universal curve

Best efficiency performance vs frequency

Summary: The need for energy/power efficiency

 $\eta_{LU} = \eta_{peak} \; \eta_{mod} \; \eta_{driver} \; \eta_{iso}$

Sub 6 GHz

 η_{peak} : peak efficiency GaN: 0.8 η_{mod} : average efficiency Doherty: 0.7 η_{driver} : including drivers Typical: 0.95 η_{iso} : isolator losses Typical: 0.93

 η_{LU} : total efficiency Type

Typical: 0.5

94 GHz

0.3 (other technologies?)

? (class AB)

(need more gain/stage)

↓ (balun)

Typical: 0.10 (peak eff)

• Surely, the PA efficiency can never reach efficiencies of sub 6GHz. But much can also be done at system level.

It is clear that advances need to be made at all levels.

Thanks for your attention.

AMPLEON.CO