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THE OUTLINE

Emerging applications in the Internet-of-Things
Quality-of-Service-Adequate Wireless Receiver Design1

Between wireless and neural networks
Event based neural works and their implementations

1Detterer 2023
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Energy efficiency is the enabler of emerging IoT applications
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QUALITY-OF-SERVICE-ADEQUATE RECEIVER (QOS-ARX)
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THINKING ACROSS MULTIPLE ABSTRACTIONS
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(I) NETWORK LEVEL OPPORTUNITY IDENTIFICATION FRAMEWORK
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(II) RECEIVER SENSITIVITY CONTROL
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(II) RECEIVER SENSITIVITY CONTROL
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(III) SYSTEM LEVEL QOS-ARX DESIGN
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(III) SYSTEM LEVEL QOS-ARX DESIGN

Ref QoS-ARX
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(IV) ADJUSTABLE DEMODULATOR
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(IV) ADJUSTABLE DEMODULATOR

9



(IV) ADJUSTABLE DEMODULATOR
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(V) ADJUSTABLE CLEAR CHANNEL ASSESSMENT (CCA)
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(V) ADJUSTABLE CLEAR CHANNEL ASSESSMENT (CCA)
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(VI) DESIGN AND IMPLEMENTATION OF QOSARX SOC
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(VI) DESIGN AND IMPLEMENTATION OF QOSARX SOC
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PARADIGM SHIFTS

Trends Before Trends Now
Flexibility↗ → Energy↗

Flexibility↗ → Energy↘
Broad Band ↗ → Energy↗ Broad Band ↗ → Energy↘
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PULSE BASED UWB COMMUNICATION

Lower Power Consumption:
Lower Energy Consumption

Measurable Time-of-Flight
Sensor
Secure Communication
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LOW POWER PULSE BASED UWB TRANSMITTER

P ≈ 5 mW
Data rate ≈ 27 Mb/s
Signal Strength ≈ -3 dBm

See more in Allebes et al. 2021.
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THE EDGE-COMPUTING
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CHALLENGES OF THE EDGE-COMPUTING

Strict energy constraints
Strict resource constraints

Massively parallel algorithms
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MCU FEATURES
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ASIC FEATURES
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GPU FEATURES
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FPGA FEATURES
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MCU WITH ASIC
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NOC METRICS BACK TO NETWORK DESIGN
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SENECA3

Computation vs Communication

3Yousefzadeh et al. 2022
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