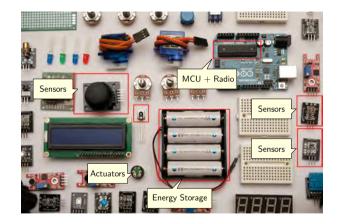

QOS-ADEQUATE COMUNICATION PAUL DETTERER

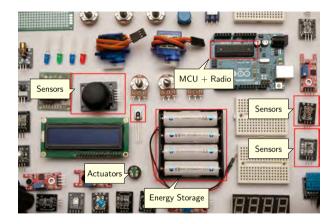
PUBLIC

THE OUTLINE

- Emerging applications in the Internet-of-Things
- Quality-of-Service-Adequate Wireless Receiver Design¹
- Between wireless and neural networks
- Event based neural works and their implementations


²Navarro, Li, and Liang 2014; Jovanov et al. 2005 LilleC

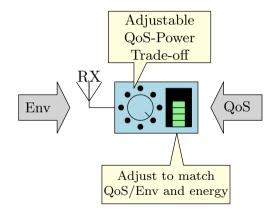
Intranet-of-Neurons



COMPONENTS OF IOT NODE

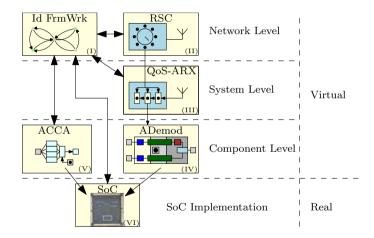
ເງຍອ

COMPONENTS OF IOT NODE

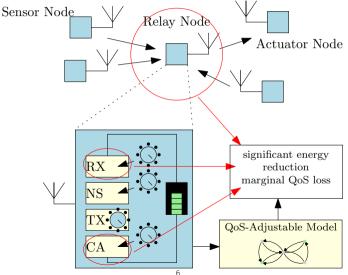


Observation

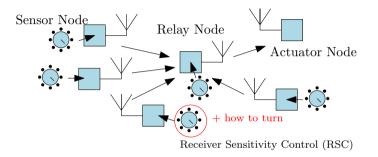
Energy efficiency is the enabler of emerging IoT applications


ເຫາຍດ

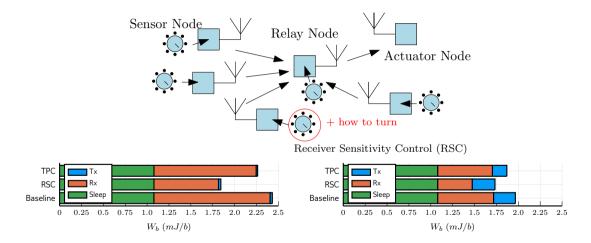
QUALITY-OF-SERVICE-ADEQUATE RECEIVER (QOS-ARX)


່ເກາຍດ

THINKING ACROSS MULTIPLE ABSTRACTIONS


ເຫາຍດ

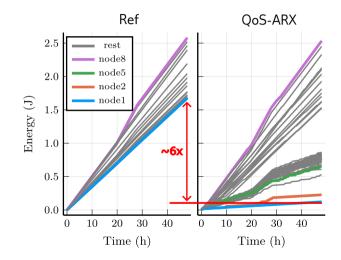
(I) NETWORK LEVEL OPPORTUNITY IDENTIFICATION FRAMEWORK



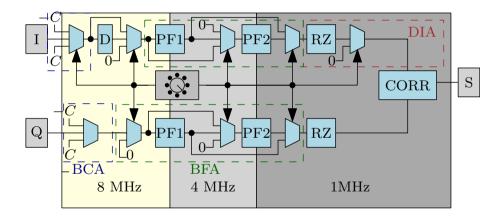
ເກາec

(II) RECEIVER SENSITIVITY CONTROL

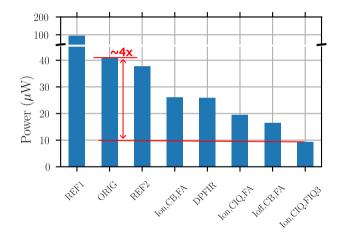
(II) RECEIVER SENSITIVITY CONTROL


່ເກາຍດ

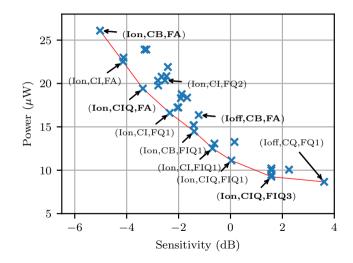
(III) SYSTEM LEVEL QOS-ARX DESIGN


່ເກາຍດ

(III) SYSTEM LEVEL QOS-ARX DESIGN


ເກາec

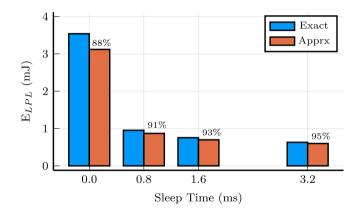
(IV) ADJUSTABLE DEMODULATOR


ເງຍອ

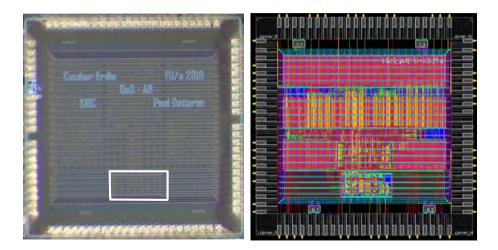
(IV) ADJUSTABLE DEMODULATOR

unec

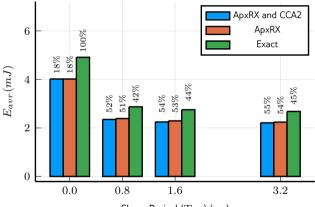
(IV) ADJUSTABLE DEMODULATOR


ເກາຍດ

(V) ADJUSTABLE CLEAR CHANNEL ASSESSMENT (CCA)


unec

(V) ADJUSTABLE CLEAR CHANNEL ASSESSMENT (CCA)


່ເກາຍດ

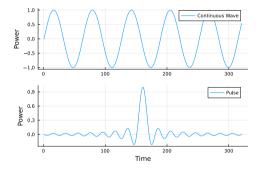
(VI) DESIGN AND IMPLEMENTATION OF QOSARX SOC

ເກາec

(VI) DESIGN AND IMPLEMENTATION OF QOSARX SOC

Sleep Period (T_{zZ}) (ms)

່ເກາຍດ


Trends Before	Trends Now
$Flexibility \nearrow \to Energy \nearrow$	

Trends Before	Trends Now
$Flexibility \nearrow \to Energy \nearrow$	$Flexibility \nearrow \to Energy \searrow$

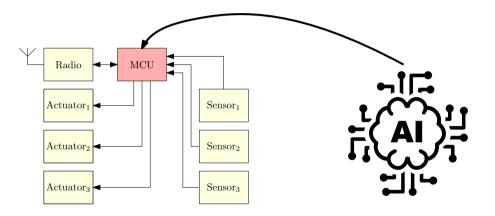
Trends Before	Trends Now
$Flexibility \nearrow \to Energy \nearrow$	$Flexibility \nearrow \to Energy \searrow$
Broad Band $\nearrow \rightarrow Energy \nearrow$	

Trends Before	Trends Now
$Flexibility \nearrow \to Energy \nearrow$	$Flexibility \nearrow \to Energy \searrow$
Broad Band $\nearrow \rightarrow Energy^{\nearrow}$	Broad Band $\nearrow ightarrow$ Energy \searrow

PULSE BASED UWB COMMUNICATION

- Lower Power Consumption:
 - Lower Energy Consumption
- Measurable Time-of-Flight
 - Sensor
 - Secure Communication

ເຫາຍດ

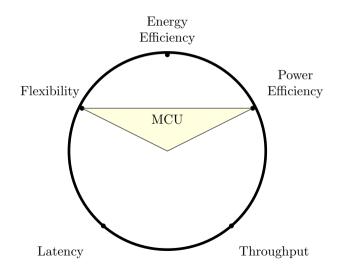

LOW POWER PULSE BASED UWB TRANSMITTER

- $P \approx 5 \text{ mW}$
- Data rate pprox 27 Mb/s
- Signal Strength \approx -3 dBm

See more in Allebes et al. 2021.

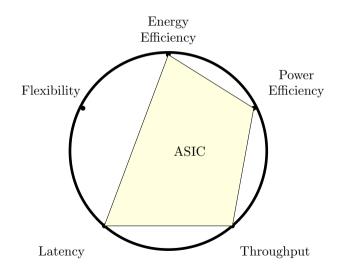
THE EDGE-COMPUTING

ເງຍອ

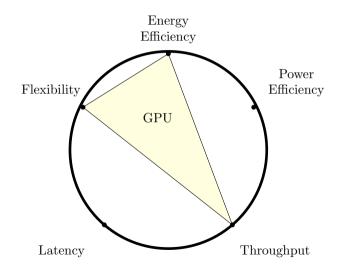

CHALLENGES OF THE EDGE-COMPUTING

- Strict energy constraints
- Strict resource constraints

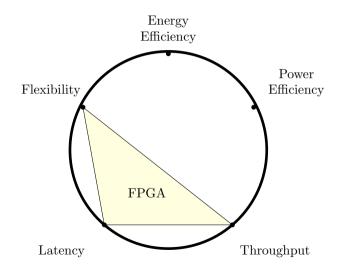
CHALLENGES OF THE EDGE-COMPUTING


- Strict energy constraints
- Strict resource constraints
- Massively parallel algorithms

MCU FEATURES


ເງຍ

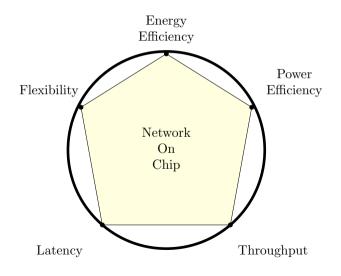
ASIC FEATURES


unec

GPU FEATURES

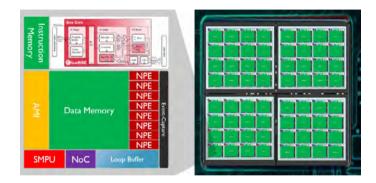
ເກາec

FPGA FEATURES



unec

MCU WITH ASIC



NOC METRICS BACK TO NETWORK DESIGN

່ເກາຍດ

Computation vs Communication

³Yousefzadeh et al. 2022 LIIIEC

REFERENCES

umec

- Allebes, Erwin et al. (Feb. 2021). "A 3-to-10GHz 180pJ/b IEEE802.15.4z/4a IR-UWB Coherent Polar Transmitter in 28nm CMOS with Asynchronous Amplitude Pulse-Shaping and Injection-Locked Phase Modulation". In: 2021 IEEE International Solid- State Circuits Conference (ISSCC).
- Detterer, Paul (Mar. 2023). "Quality-of-Service-Adequate Wireless Receiver Design". Phd Thesis (TU/e).
- He, Yuming et al. (Oct. 2022). "An Implantable Neuromorphic Sensing System Featuring Near-Sensor Computation and Send-on-Delta Transmission for Wireless Neural Sensing of Peripheral Nerves". In: IEEE Journal of Solid-State Circuits 57.10, pp. 3058–3070.
- Jovanov, Emil et al. (2005). "A wireless body area network of intelligent motion sensors for computer assisted physical rehabilitation". In: *Journal of NeuroEngineering and rehabilitation* 2.1, pp. 1–10.
- Navarro, Miguel, Yimei Li, and Yao Liang (June 2014). "Energy profile for environmental monitoring wireless sensor networks". In: 2014 IEEE Colombian Conference on Communications and Computing (COLCOM), pp. 1–6.
- Yousefzadeh, Amirreza et al. (June 2022). "SENeCA: Scalable Energy-efficient Neuromorphic Computer Architecture". In: 2022 IEEE 4th International Conference on Artificial Intelligence Circuits and Systems (AICAS). IEEE.

embracing a better life

