Packaging and integration of antennas and chips at mm-Wave and beyond

and and and a second second second

CWTE RESEARCH RETREAT 2023, EINDHOVEN, NETHERLANDS, 25[™] OCTOBER 2023

Piyush Kaul, Ph.D. Candidate/Researcher

Department of Electrical Engineering, Integrated Circuits

CWTe CENTER FOR WIRELESS TECHNOLOGY EINDHOVEN

TU/e

Contents

□ Introduction

Packaging and integration trends

Conclusions

Contents

□ Introduction

Packaging and integration trends

Conclusions

Introduction

NDT

Communication

CENTER FOR WIRELESS

TECHNOLOGY

EINDHOVEN

CWTe

TU/e

20

400 GHz

[1]

4 Department of Electrical Engineering, Integrated Circuits

300 GHz

Imaging

Histology Slide

Introduction

□ A mm-Wave/THz integrated system: for instance, wireless backhaul links

Introduction

□ A mm-Wave/THz integrated system: for instance, imaging/spectroscopy camera

Contents

Introduction

Packaging and integration trends

Conclusions

- Antenna-in-package (AiP)
 - □ Solution to implement antennas in a package that includes a RF transceiver chip
 - AiP can be further integrated with front-end, baseband, and power management modules
 - → System-in-package (SiP)

- Advantages
- □ Short interconnect between RF chip and antenna
- □ Small form factor

- □ Antenna-in-package (AiP) design considerations
 - □ Antennas \rightarrow popular types: patch, yagi-uda, and grid

Antennas	Advantages	Limitations	Use-cases
Patch	Compact, light-weight, multi-band, polarization diversity, ESD	Narrow impedance bandwidth, low-power handling, warpage	Base station, mobile, Radar, AR/VR, imaging
Yagi-Uda	Compact, light-weight, wide impedance bandwidth, good front-to- back ratio	Non polarization diverse, low-power handling, PCB location sensitive	Mobile
Grid	Compact, light-weight, high-gain, wide impedance bandwidth, low cross polarization	Narrow gain bandwidth, Iow-power handling, Pattern squint	Radar

[3]

- □ Antenna-in-package (AiP) design considerations
- □ Package → AiP acts as a package that connects to a PCB → ball-grid array (BGA) and quad flat no-lead (QFN) packages

BGA

- Antenna-in-package (AiP) design considerations
 - □ RF chip-Antenna interconnects \rightarrow bond pads (GSG/GSGSG), traces (CPW/Microstrip), and vias
 - $\square \quad Bond pads implementation \rightarrow wire-bonding or flip-chip$
 - \Box Antenna feed lines \rightarrow multi-layer routing of transmission lines
 - \Box Impact on performance \rightarrow bond pad size, pitch, bump diameter, wire-bond length, etc.

Flip-chip

- □ Antenna-in-package (AiP) design considerations
 - □ AiP fabrication materials \rightarrow LTCC, HDI (FR4, BT-resin, LCP), and eWLB

TECHNOLOGY

EINDHOVEN

0

On-chip antennas (AoC)

- □ Solution to integrate wireless system modules on the same substrate (baseband to antennas)
- □ Applications → wireless sensor systems, power generation and beam-steering, Radar sensors, imaging, IoT, etc. Passivation

			M7
 Advantages Miniaturization Cost-effective High-level of integration 	Digital DAC/ADC Substrate	Tx Antenna RF Rx Antenna	Inter-layer dielectric M6 M5 M4 M4 M3 M2 M1 EPI Silicon substrate
13 Department of Elect	trical Engineering, Integrated Circuits		CWTe CENTER FOR WIRELESS TECHNOLOGY EINDHOVEN

On-chip antennas (AoC) applications

Applications	Advantages	Limitations
5G/6G Transceivers	Compact, low-cost, Massive MIMO, easy integration	Mutual coupling, multi-band operation, RF-EM interference
ΙοΤ	Low power, low cost, compact, IoT @ mm-Wave	Antenna size @ low frequency operation
Wireless sensor networks	Ultra-low power implementation, compact, low cost, low profile	Antenna size @ low frequency operation, efficient energy transfer, sensor range
Biomedical/Medical	Ultra-low power implementation, cost-effective, optimized EM energy harvesting	Miniaturization, robustness, performance degradation, multi-band, EMI
Wireless interconnects	Mitigate issues with wired interconnects; delay, loss, bandwidth, data rate	Mutual coupling, Antenna size @ low frequency operation
Automotive	Compact integration of multiple antennas within vehicles	Multi-band operation, mutual coupling, antenna size @ low frequency operation

14 Department of Electrical Engineering, Integrated Circuits

[4]

- On-chip antennas (AoC) design considerations
 - □ Antennas → popular types: dipole, bow-tie, slot, loop, monopole, patch, tuning fork, etc.
 - □ Antenna type considerations:
 - 🛛 Gain
 - Bandwidth
 - □ Array implementation
 - Mutual coupling

- On-chip antennas (AoC) design considerations
 - $\hfill\square$ Module to antenna interconnects \rightarrow galvanic and non-galvanic

Interconnect considerations Loss Delay Signal bandwidth RF-EM isolation

ITER FOR WIRELESS

Data-rate (chip-to-chip communication)

16

 \Box Towards waveguide integration \rightarrow mitigate limitations of substrate antennas

Currently examined integration concepts

Lossy antenna and transmission line
 Performance degrading RF-bondwire
 Packaging problems (resonances)
 Small antenna size (substrate)

Proposed **ultra low-loss** packaging & integration concept

Low loss antenna and waveguide
 Low loss contactless waveguide to
 waveguide-on-chip transition
 Resonance-free antenna-chip packaging
 Larger antenna size (no substrate)

WTe CENTER FOR WIRELESS TECHNOLOGY EINDHOVEN

 \square Towards waveguide integration \rightarrow contactless IC-WG integration; grid amplification

 \Box waveguide integration \rightarrow contactless IC-WG integration; slotted-waveguide antennas

• waveguide integration \rightarrow contactless IC-WG integration; active waveguide unit

Heterogeneous integration

- □ Solution to package modules implemented in different technologies with separate functionalities
- \Box Costly technology downscaling \rightarrow packaging is being recognized as a driver in performance growth
- Products are being designed to break a larger design into smaller "chiplets"
- Applications; electronics-photonics integration for communication, sensor systems, healthcare, etc.

Contents

Introduction

Packaging and integration trends

Conclusions

Conclusions

□ Research and development @ mm-Wave/THz frequencies → packaging and integration is a driver for performance growth

Type of packaging and integration methodology depends,

- Application domain (communication, imaging, etc.)
- □ Number of antennas (single, multiple, array, etc.)
- □ Substrate (AiP or AoC) or metal-only antennas (waveguide integration)
- □ As mm-Wave/THz frequencies gain popularity \rightarrow imperative that packaging and integration is considered during the design procedure

23 Department of Electrical Engineering, Integrated Circuits

Conclusions

24

System packaging and integration considerations

References

[1] CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0/)

[2] <u>https://ticwave.com/index.php/shop/ticmos-1kpx</u>

[3] Y. Zhang and J. Mao, "An Overview of the Development of Antenna-in-Package Technology for Highly Integrated Wireless Devices," in *Proceedings of the IEEE*, vol. 107, no. 11, pp. 2265-2280, Nov. 2019, doi: 10.1109/JPROC.2019.2933267.

[4] R. Karim, A. Iftikhar, B. Ijaz and I. Ben Mabrouk, "The Potentials, Challenges, and Future Directions of On-Chip-Antennas for Emerging Wireless Applications—A Comprehensive Survey," in *IEEE Access*, vol. 7, pp. 173897-173934, 2019, doi: 10.1109/ACCESS.2019.2957073.

[5] A. Aljarosha, A. B. Smolders, M. Ivashina and R. Maaskant, "Toward wide-band low-loss gap-waveguide-integrated grid amplifiers," 2017

International Symposium on Antennas and Propagation (ISAP), Phuket, Thailand, 2017, pp. 1-2, doi: 10.1109/ISANP.2017.8228732.

[6] <u>https://www.gapwaves.com/wp-content/uploads/2022/09/Gapwaves-38-dBi-E-Band-antenna.pdf</u>

[7] A. Aljarosha, P. Kaul, A. B. Smolders, M. K. Matters-Kammerer and R. Maaskant, "Silicon-Based IC-Waveguide Integration for Compact and High-

Efficiency mm-Wave Spatial Power Combiners," in *IEEE Transactions on Components, Packaging and Manufacturing Technology*, vol. 11, no. 7, pp. 1115-1121, July 2021, doi: 10.1109/TCPMT.2021.3086268.

[8] P. Kaul, A. Aljarosha, A. B. Smolders, M. K. Matters-Kammerer and R. Maaskant, "Waveguide Integration of a Multi-Channel Power Amplifier in a SiGe
 BiCMOS Technology at mm-Wave Frequencies," in *IEEE Transactions on Components, Packaging and Manufacturing Technology (submitted)*.
 [9] https://www.hiconnects.org/project/

Thank you for your attention!

Questions?

