

# The evolution of Wireless Communication is shaking up Test And Measurement!

Marc Vanden Bossche

Contact: Marc.Vanden.Bossche@ni.com

ni.com

### Evolution of Telecommunication

#### The first wired, electrical commercial communications



ni.com



5 Needle telegraph (1837) Cooke and Wheatstone (British) <sup>(\*)</sup> Morse telegraph (1837) Samuel Morse (American)<sup>(\*\*)</sup>

<sup>(\*)</sup>: By Geni - Photo by User:geni, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=6503269 <sup>(\*\*)</sup>: By (c) 2006 Zubro - image by myself, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1336642

#### Evolution of Telecommunication



Source: Ericsson



#### 27%

2016 Smartphone Penetration Rate

78%

2020 Smartphone Penetration Rate

87%

2025 Smartphone Penetration Rate



Wireless Adoption Will Continue to Grow

6%

FORECASTED WIRELESS IC REVENUE CAGR
FROM \$23B (2022) TO \$32B (2027)

PROJECTED INCREASE OF MOBILE TRAFFIC DATA BY 2027

**51%** OF ALL CELLULAR CONNECTIONS BY 2027 WILL BE MASSIVE IOT



## Shift to IoT Applications



- Inputs & outputs are human-centric (audio, video, tactile)
- Traditional CPU-based software (augmented with ML)
- Latency requirements are human-centric (100's of ms)
- Systems mimic their **centricity** designed for 1-1 connections



- Inputs & outputs are machine-centric (radar, lidar, cameras, motors)
- ML-based neural nets play a much larger role
- Latency requirements are machine-centric (µs or better)
- Systems mimic their **centricity** designed for machines to collaboratively perform a task

"A decade ago, we had about 24 months from engineering sample to delivery of our first customer sample. Ramp to a million units would take another seven or eight months. By contrast, today, the time from engineering sample to shipping a million units happens in less than six months."

-LEADING RF CHIPMAKER

RF FRONT-END COMPLEXITY 500,000X Increase

#### TIME-TO-MARKET DEMANDS



Months

Months

6

# Compounding and conflicting issues pressure the product development lifecycle



57%

of respondents fear their production processes are outdated and cannot keep up with new business and technology trends

46%

say they will lose market share within 2 years unless they make significant changes to product lifecycle processes

# What about Test and Measurement?





## T&M did not keep up with the Rate of Change



## An Example of Rate of Change: History of the Camera



#### History of Analogue Electronics Measurement Equipment



#### N **Measurement Hardware Will Evolve**



Massive-scale system emulation

Higher Frequency and Larger Bandwidths (closer to the DUT)

Scalability in Channels (smaller and lower cost)

**Higher Performance Measurements** 

Real-time processing (HIL)

System Level **Measurements** 

Efficiency of Cloud and **Edge Processing** 

Blend of Virtual & Physical Testing

#### Improved Measurement Accuracy under Realistic Conditions



(\*): J.C. Pedro, N.B. Carvalho," Designing Band-Pass Multisine Excitations for Microwave Behavioral Model Identification"

#### ■ Improved Measurement Accuracy – VSG and VSA Setup



#### Improved Measurement Accuracy – Ampl / Phase Uncertainty $A_1$

Amplitude Phase  $\Gamma_{S}$  $\Gamma_{S}$ 0.181 0.322 0.573 0.809 1.02 1.28 1.61 0.0275 0.0490 -0.0873 -0.124 -0.156 -0.1970.248 -25 -25 0.0490 0.156 0.221 -0.279 0.447 -2D 0.0873 1.44 1.81 2.28 2.87 0.322 0.573 1.02 -20 -15 -0.0873-0.156 -0.279 -0.397 -0.503 -0.638 0.811 Lower 2.56 3.22 4.06 5.11 0.573 1.02 1.81 -15 -12 -0.124 -0.221 -0.397 -0.566 -0.719 -0.915-1.173.62 4.56 5.74 7.23 2.56 0.809 1.44 -12 limit -1.17 -1.50 -10 -0.156 -0.279 -0.503 -0.719 -0.915 4.56 5.74 7.23 9.12 1.81 3.22 1.02 -8 -10 -0.197 -0.353 -0.638 -0.915 -1.17 -1.50 -1.93 5.74 7.23 9.12 11.5 -6 2.28 -0.248 -0.447 -0.811 -1.17 -1.50 -1.93-8 1.28 4.06 2.51 2.87 5.11 7.23 9.12 11.5 14.5  $\Gamma_L$  -25 -20 -15 -12 -6 1.61 -10 -8 -6  $\Gamma_{S}$  $\Gamma_L$ -25 -20 -15 -12 -10 -8 -6 0.0274 0.0487 0.0864 0.122 0.153 0.192 0.241 -25 hits (out of 360) 0.0487 0.0864 0.215 0.270 0.339 0.425 -20 0.153 0.0864 0.153 -15 0.270 0.380 0.475 0.594 0.742 Upper <sup>-12</sup> 0.122 0.215 0.380 0.531 0.664 0.828 1.03 30 0.270 -10 0.153 0.475 0.664 0.828 1.03 1.28 limit 20 -8 0.339 0.192 0.594 0.828 1.03 1.28 1.58 Error Histogram -6 1.03 1.28 1.58 0.742 0.241 0.425 1.95 10  $\Gamma_L$ -25 -20 -15 -12 -10 -8 -6 hits (out of 360) -5 0 5 deviation (deg) 40 30 For -10/-6 dB mismatch combination 20 Error Histogram -1.5 .. +1.3 dB -9.1 .. +9.1 deg 10 -1.0-0.50.0 0.5 1.0 ni.com

deviation (dB)

Convergence of Instrumentation for Improved Measurement Accuracy (I)





<u>Remark:</u> Measurement of  $\Gamma_L$  does not need a K factor.

#### Improved Measurement Accuracy for a Two-Port Setup – In Fixture





CGH40006P 6 W, RF Power GaN HEMT

### Channel / Port Scalability



**Doherty Amplifier** 



Amplifier Characterization under Beamforming

#### וח

#### ni.com

#### From Conductive to Over the Air Characterization

mmWave active antenna arrays are being deployed already for 5G

Combined use of analog and digital beamforming

Trend towards highly integrated designs

- Antenna in package (AiP)
- Antenna on chip (AoC)





IBM/ERICSSON 28 GHZ 8X8 /WWW.MICROWAVEJOURNAL.COM/ARTICLES/27830-IBM-AND-ERICSSON-ANNOUNCE-50



### • Over the Air Characterization



NXP MMW9014K beamformer







NXP 8x8 dual-pol antenna panel

|   |   | 0 | 0 | • | ۲ |   |   |   |
|---|---|---|---|---|---|---|---|---|
|   |   | 0 | • | ۲ | 0 |   |   |   |
|   |   |   | 0 | 0 | ۲ |   |   |   |
|   | ۲ |   |   |   |   |   |   |   |
|   |   | 0 |   | 0 |   |   |   |   |
|   | 0 | 0 | 0 | 0 | 0 |   |   |   |
| 0 | 0 | ۲ | 0 | 0 | 0 |   |   |   |
| ۲ | ۲ | 0 | 0 | 0 |   |   |   |   |
| 0 | 0 |   | 0 | 0 |   |   |   |   |
| 0 | • | 0 |   | 0 |   | 0 | 0 | 0 |

Antenna side



- HF Electrical Measurements
  - and Accurate Mechanical Positioning
- What does one need to measure ?
- New calibration techniques

# Evolve Instruments to reduce Cost of Production Test Example

Near-Field Probe Antenna System (PAS)



#### The Near-Field Probe Antenna System

PAS



#### Reconstruction of the DUT far-field behavior with a static appliance

ni.com

#### The Near-Field Probe Antenna System



## The Near-Field Probe Antenna System

#### Extension to broadband operation enables modulated measurements

- Multi-tone calibration and frequency-sliced reconstruction yield far field under modulation conditions
- NF PAS has better measurement sensitivity compared to an OTA chamber-based approach because we minimize pathloss that occurs in chamber



#### Many Disciplines meet each other !!!



- Very deterministic
- Complex / Many tests
- Physical insight
- Model
- E.g. Adaptative sampling
- = more efficient than AI / ML

## T&M and AI/ML

Real Environment (many combinations of temperature and reflections)





**EMERSON.** NI is now part of Emerson.

## Questions ...

â

The evolution of Wireless Communication is shaking up Test And Measurement!

Contact: Marc.Vanden.Bossche@ni.com