Integrated Circuits for Communications after the Happy Scaling Era (based on examples from channel coding)

Andreas Burg

Telecommunications Circuits Laboratory, EPFL

The End of the "Happy-Scaling" Era: Lets get to work!

Wireless Modem Architecture & Trends

Wireless modem is a key component in mobile SoCs

Affected by constant updates and innovations as algorithms and standards evolve

Channel Codes in 3GPP Mobile Wireless Systems

LDPC / Polar Codes

Sequential Decoding of Convolutional Codes

VITERBI algorithm (1967)

- Step-by-step trellis traversal
- Inherently sequential process
 - Bits per clock cycle defined only by the code
 - Parallel processing only with exponential complexity

3G: From Convolutional to Turbo Codes (1990s)

- Encoding with two independent convolutional codes based on "randomly interleaved" data
- ^{*n*}) Iterative decoding
 - Two component decoders operating on interleaved convolutional codes
 - Exchange of reliability information
 - Component decoders based on the BCJR algorithm
 - Performance close to Shannon limit

Efficient Decoding of Turbo Codes with Sliding Window BCJR

- Structurally similar to Viterbi algorithm
- Requires forward and backward iterations
 - Large memory to store intermediate results
- Decompose trellis into smaller, overlapping windows
 - Memory reduction at the cost of additional complexity
 - Forward, backward, and dummy iterations can be parallelized: less memory and higher throughput

Throughput 390 Mbps Energy/bit ~2nJ/bit

Process multiple trellis windows in parallel with parallel BCJRs

- Parallel memory access
 - Even iterations (non-interleaved): no access conflicts

Process multiple trellis windows in parallel with parallel BCJRs

- Parallel memory access
 - Non-interleaved iterations: no access conflicts
 - Interleaved iterations: access conflicts due to re-ordering

Process multiple trellis windows in parallel with parallel BCJRs

- Parallel memory access
 - Non-interleaved iterations: no access conflicts
 - Interleaved iterations: access conflicts due to re-ordering
- 4G-LTE defines a hardware-optimized Quadratic-permutation-polynomial (QPP) interleaver that avoids access conflicts

- Memory consumes a significant portion of the area
 - More parallel functional units lead to better hardware-efficiency
- Maximum parallelism limited by the interleaver
 - increasing structure eventually impacts
 FER performance
- Reference implementations reach to only ~1 Gbps even in advanced technology nodes

C. Studer, C. Benkeser, S. Belfanti and Q. Huang, "Design and Implementation of a Parallel Turbo-Decoder ASIC for 3GPP-LTE," in IEEE Journal of Solid-State Circuits, vol. 46, no. 1, pp. 8-17, Jan. 2011

R. Shrestha and R. P. Paily, "High-Throughput Turbo Decoder With Parallel Architecture for LTE Wireless Communication Standards," in IEEE Transactions on Circuits and Systems I: Regular Papers, 2014

The Comeback of a Forgotten Idea: Low Density Parity Check (LDPC)

- Discovered by Gallager already in 1963
- Linear block code with a sparse parity check matrix
- Performance close to Shannon limit
- Belief Propagation (BP) Decoding
 - Passing messages on a factor graph
 - Highly parallel
 - Many short component codes (CNs)
- Deemed to complex for implementation
- Come-back in the wake of VLSI parallelism (MacKey, 1996)

MIN-SUM and Friends: Many Approximations are Good Enough

$$R_{c,v} = \tanh^{-1} \left\{ \prod_{n' \in \mathcal{N}(m) \setminus n} \tanh(T_{v,c}/2) \right\}$$

Optimal Sum-Product BP decoding has prohibitively complex message update rules

Sum Product (SP)↩	$R_{c,v} = \prod_{v' \in M(c) \setminus v} \operatorname{sgn}(T_{v',c}) \cdot \bigoplus_{v' \in M(c) \setminus v} T_{v',c} \in$	F. R. Kschischang, et al, TIT, 2001년
Min-Sum (MS)⊱ੋ	$R_{c,v} = \prod_{v' \in M(c) \setminus v} \operatorname{sgn}(T_{v',c}) \cdot \min_{v' \in M(c) \setminus v} Q_{v',c} \in$	N. Wiberg, 1996←
Approximate Min (A-Min*)⊲	$R_{c,v} = \begin{cases} \prod_{v' \in M(c) \setminus v} \operatorname{sgn}(T_{v',c}) \cdot \bigoplus_{v' \in M(c) \setminus v} T_{v',c} , \text{ if } T_{v,c} \text{ is the minimum,} \\ \prod_{v' \in M(c) \setminus v} \operatorname{sgn}(T_{v',c}) \cdot \bigoplus_{v' \in M(c) \setminus v} T_{v',c} \text{ otherwise} \end{cases} $	C. Jones <i>, et al, 2003</i> ⊲⊐
	$\int_{v' \in M(c) \setminus v} \operatorname{sgn}(r_{v',c}) \operatorname{II}_{v \in M(c)} r_{v,c} , \text{ otherwise.}$	
Normalized MS (NMS)<리	$R_{c,v} = \alpha \cdot \prod_{v' \in M(c) \setminus v} \operatorname{sgn}(T_{v',c}) \cdot \min_{v' \in M(c) \setminus v} T_{v',c} \leftarrow$	J. Chen <i>, et al, TCOM, 2005</i> €
Offset MS (OMS)←	$R_{c,v} = \prod_{\nu' \in M(c) \setminus v} \operatorname{sgn}(T_{\nu',c}) \cdot \max\left(\min_{\nu' \in M(c) \setminus v} T_{\nu',c} - \beta, 0\right) \in$	J. Chen, <i>et al, TCOM, 2005</i> €
Self Correction MS	$T_{v,c} = 0, \text{ if } \operatorname{sgn}\left(T_{v,c}^{(i)}\right) \neq \operatorname{sgn}\left(T_{v,c}^{(i-1)}\right) \in \mathbb{I}$	V. Savin, et al, ISIT, 2008↩
Adjusted MS (A-MS)↩	$\left(\prod_{v' \in M(c) \mid v} \operatorname{sgn}(T_{v',c}) \cdot \operatorname{LUT}_{v' \in M(c) \setminus v} T_{v',c} , \text{ if } T_{v,c} \text{ is the minimum,} \right)$	T. Richardson, et al, 2018€
	$R_{c,v} = \begin{cases} \prod_{v' \in M(c) \setminus v} \operatorname{sgn}(T_{v',c}) \cdot \operatorname{LUT}_{v \in M(c)} T_{v,c} , \text{ otherwise.} \end{cases}$	
Adaptive MS← [□]	$R_{c,v} = \begin{cases} \prod_{v' \in M(c) \setminus v} \operatorname{sgn}(T_{v',c}) \cdot \max\left(\min_{v' \in M(c) \setminus v} T_{v',c} - \beta, 0\right), \text{ if } c \le 4\\ \prod_{v' \in M(c) \setminus v} \operatorname{sgn}(T_{v',c}) \cdot \min_{v' \in M(c) \setminus v} T_{v',c} , \text{ otherwise} \end{cases} $	K. Trung, <i>et al, ISCAS, 2019</i> ←

Scaling (More Transistors) Enable Extremely High Throughput

Isomorphic architecture Direct mapping of Tanner graph onto silicon **Pipelined isomorphic architectures**

Parallelize iterations: one cycle per code word

Bottleneck: Message exchange between VNs and CNs Routing of messages between layers leads to extreme routing congestion Only feasible for codes with low row/column degrees (poor performance)

Finite Alphabet Decoding to the Rescue

- Quantization of messages in fixed-point implementations has large impact on
 - Routing, storage, logic complexity
 - Decoder error rate performance and error floor
- Information theoretic analysis suggests a nonuniform quantization
 - Combining with conventional arithmetic is inefficient
- Solution: CNs and VNs based on lookup-tables
 - Information bottleneck analysis provides optimum mapping from input-messages to output messages
 - LUTs optimized for multi-stage as Boolean logic

LUT

High Throughput for Optical Communications

Computational effort per information bit and **required throughput** determines implementation requirements

Flexible QC-LDPC Codes and Decoder Architectures for 5G

5G LDPC matrix constructed for flexibility and efficiency

Quasi cyclic code: compact base graph that expands into a larger matrix depending on block size

Raptor-like code: good channels (high rate) require less decoding effort than bad channels

Decoder architecture optimized for 5G QC-LDPC codes

Layered decoding: row-wise processing of the base graph (good convergence and Zx parallelism)

Block-parallel: decomposes CN and VN calculation into multiple cycles for HW efficiency

5G-NR Polar Codes for Short Block Lengths and URLLC

Polar codes: discovered by E. Arikan

- Systematic construction with great flexibility for code length and code rate
- Good performance for short block lengths when concatenated with a CRC (for list decoding)
- Used for 5G-NR control channel and considered for URLLC and 6G

Decoding: successive cancellation (SC) algorithm and its list variants for better FER performance

• Sequential process following a tree-traversal procedure decodes bit-by-bit

Y. Ren, A. T. Kristensen, Y. Shen, A. Balatsoukas-Stimming, C. Zhang and A. Burg, "A Sequence Repetition Node-Based Successive Cancellation List Decoder for 5G Polar Codes: Algorithm and Implementation," in IEEE Transactions on Signal Processing, 2022

Y. Ren, A. T. Kristensen, Y. Shen, A. Balatsoukas-Stimming, C. Zhang and A. Burg, "A Sequence Repetition Node-Based Successive Cancellation List Decoder for 5G Polar Codes: Algorithm and Implementation," in IEEE Transactions on Signal Processing, 2022

BP Decoding for Everyone

Can we decode Polar codes and other short codes with BP decoding?

Close-to-Optimal Performance with Simple, Suboptimal Decoders

Conclusions

- Technology continues to scale, but improvements are mostly due to density
- Algorithm choices and optimizations are key to efficient implementation
- Parallel processing is essential to exploit the remains of Moore's law
 - Sequential decoders fall short from scaling
 - BP decoding scales well with technology
- Memory becomes an increasingly serious issue

Acknowledgements

Yuqing Ren Yifei Shen

Andreas Toftegaard Kristensen

Reza Ghanaatian Alexios Balatsoukas-Stimming