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Artificial Intelligence is like a Swiss army knife ...

... as it can be applied to many different applications/areas, such as machine vision,
logistics, planning, robotics, optimization, predictive maintenance, sales, ...
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High Tech prepares for Al

Google
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Consumer ‘database’-driven Al

Google

Uses ML to predict traffic density
based on anonymous mobile phone
position data.

Facebook

Uses ML-based algorithms to detect
and recognize faces in photo’s.

Apple

Developed speech recognition
service Siri with ML.

Introduction

Netflix

NETFL IX Uses ML as part of their movie

recommender system.
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A Uses ML for recommending new ;
Spotify’  music. o
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Paypal v

P) Uses ML to detect and combat fraud

PayPal

Industrial ‘sensor data’-driven Al

SIEMENS
lingeinuity for Life

SEMIOTICLABS

General Electric

Uses ML develop Digital Twins to
understand, predict and optimize
performance of assets.

Siemens

Uses Al a.o. for Industry 4.0, medical
and traffic optimization applications

SemioticsLab

Dutch startup using ML for
predictive maintenance.

S ptc

@ freenome
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Tesla

Uses ML to develop autonomous
driving cars.

PTC

Applies AR and ML for maintenance.

Freenome

Startup using Al for early cancer
detection.
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High Tech prepares for Al

Data Science Al (in) Engineering
DATA DATA
‘ isa ‘ generated by
NUMBER SENSOR
‘ has a ‘ has a
Numerical/Logical meaning Physical meaning
‘ analysed by ‘ analysed by
Mathematics, Computer Science Engineering, Science
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Designing high tech systems

Engineer

Source: ‘The Design of High Performance Mechatronics’, R.M. Schmidt et al, 2014
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Designing high tech systems

First principles
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Growing design challenges
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Designing high tech systems

First principles

-
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Data

MORE COMPLEXITY

MORE INTELLIGENCE

MORE PERFORMANCE

MORE INTEROPERABILITY
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Growing design challenges

Complexer models and bigger data needed to deal with challenges

First principles

MORE COMPLEXITY MORE PERFORMANCE
COMPLEXER

MODEL

L

BIGGER Data

Engineer

MORE INTELLIGENCE MORE INTEROPERABILITY
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Growing design challenges

Artificial Intelligence is a technology platform to deal with bigger datasets and complexer models

First principles

—— [ MODEL

l BIGGER " SMARTER
COMPUTE ALGORITHMS

complex
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INTELLIGENCE

Engineer Tomorrow

%,,,;k
. 2
| simple dx

BIGGER Data
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small big
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Bigger compute

GPU computing drives Al

GPU COMPUTING ROADMAP
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Moore’s Law slowing to |.I1X per year

1.5X per year

Single-threaded performance with CPU

1980 1990 2000

2010

2020

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun,
L. Hammond, and C. Batten New plot and data collected for 2010-2015 by K. Rupp

Source: Nvidia, 2018
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Al COMPUTE USAGE FOR VISION, PLANNING, SPEECH

Petaflop/s-days
le+h

1042 State-of-the-art GPU

~10Tflops @ €1k

le+0
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le-12 2-year doubling (Moore's Law)

le-14 Perce.ptron
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Source: https://openai.com/blog/ai-and-compute/

Deep Belief Nets and
layer-wise pretraining.
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RNN for Speech
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Smarter algorithms

Scale drives performance

Performance
(e.g. object detection accuracy,
speech recognition accuracy)

dataset

swyos|y

Big Da;ta (>> GB)

1

Source: ‘Masterclass Deep Learning’, VBTI 2018
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v

Amount of data

Deep Neural Network
(e.g. convolutional NN)

VNV
o4

(small) Neural Network ,
(e.g. multi-laver perceptron)

Traditional Machine Learning
(e.g. linear reagression, SVM, DecisionTree)
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Al Technology

Al Application

Artificial Intelligence

Artificial Intelligence (Al) is a multidisciplinary field of science whose goal is to create intelligent machines.

Knowledge/Logic Machine Learning Deep Learning

\/ \/ \/ \, i - E]

#& 3 -
| [ &
. €
neural networks convolutional nn €ep

=) i, :’._lé B
Engine 4—"'" --m-- state, action O
e} reward
Sensors w G enviﬁent el
. . . | . recurrent nn
genetic algorithms subsumption reinforcement learning

Shakey robot Fuzzy Logic
Lisp, Prolog  STRIPS planning system Rice Cooker

self-driving car HomePods

| | |
2000’s 2010’ 2020’

1950’s 1960’s 1970’s
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Deep learning: Convolutional Neural Networks (CNNs)

A CNN is a deep neural network optimized
for processing image data

CNNs became popular in 2012 when
‘AlexNet’ won the ImageNet competition

13 layers deep, £ 62min parameters to train

Trained the network on 15 min annotated images
(22,000 categories)

1.4 ExaFLOP (= 1.4e6 TFLOP) needed for training
7.8 GFLOP per forward pass per image

Trained on two GTX 580 GPUs for 5 to 6 days
1500 GFLOPS / GPU, 3000 GFLOPS total

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-
convolutional-neural-networks.pdf

Source
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CNNs are outperforming traditional CV
systems in many visual domains

: ‘Masterclass Deep Learning’, https://vbti.nl/masterclasses/, VBTI 2018

Artificial Intelligence
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Deep learning: Deep Reinforcement Learning (DRL)

* RLis a machine learning technique that OpenAl gym benchmark envirenment

learns to optimize a reward by interacting
with (virtual/real) environments.

Agent not trained

e Performance of recent RL algorithms on
games surpass human-performance on
many games, including Atari games, Dota
2, poker, chess, Shogi, checkers, and Go.

Score

50 100 150 200 250 300 350 400
Time (minutes)

Agent trained after 8 hours

300 —— ScoreEMA

state, )
action
reward

Score

100

-100

50 100 150 200 250 300 350 400
Time (minutes)

environment

Source: ‘Masterclass Deep Learning’, https://vbti.nl/masterclasses/, VBTI 2018
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Al research & trends

e Computer vision: Deep Learning outperform human-expert based algorithms and are the
‘low hanging fruit’ for industry, for a.o. robotics, inspection and monitoring applications.

* Natural language processing: Deep Learning enabled mature level of speech recognition
and text processing. Could be applied for developing machine interface (e.g. in
combination with Augmented Reality) or for processing engineering documents.

* Planning & Problem Solving: By combining different Deep Learning techniques such as
convolutional neural networks and reinforcement learning, new systems are build that
ourperform humans in solving specific tasks (and games).

* Robotics & Control: Training Al algorithms on (virtual) Digital Twins of systems results in
robust control solutions to problems virtually impossible to humanly solve.

14 Al Consortium HTSC g TU/e
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Al solving challenges

CHALLENGE 1 CHALLENGE 2
Fingers of gripper are glued together and Robot need to walk around while
robot needs to pickup part. minimizing ground-feet contact.
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Robotics example: learning dexterity

Problem Solution
* Robot hand should reposition an object e Train in simulation
e High-dimensional control (24 DoF) * CNN to estimate object pose from 3 camera’s

+  Noisy and partial observations (friction, * RL+ RNN (LSTM) to determine fingertip actions

slippage) * Transfer to real world

* Manipulating more than one object * OpenAl’s Rapid platform is used with 6144 CPU cores
and 8 GPUs, collecting about one hundred years of

Source: https://arxiv.org/abs/1808.00177 . .
experience in 50 hours.
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https://arxiv.org/abs/1808.00177

Robotics example: learning dexterity

Problem Result
* Robot hand should reposition an object
e High-dimensional control (24 DoF)

* Noisy and partial observations (friction,
slippage)

* Manipulating more than one object

Source: https://arxiv.org/abs/1808.00177

https://www.youtube.com/watch?feature=oembed&v=DKe8FumoD4E
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Summary

Artificial Intelligence technology is maturing rapidly the last few years and outperforms
human (solutions) in various areas.

There is a gap between the world of engineering and data science that can be bridged by:

* Combining first principle techniques with machine learning

 Making Deep Learning algorithms explainable

Al performance is driven by compute power, big data and algorithms

Still many barriers need to be taking by industry to adopt Al, a.o.

e Complex Al technology stack
 Many number of different Al algorithms (which to use when?)

 Transfer results from virtual to real world
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Al Engineering Lab
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Support industry with adopting Al technology
and create research consortia

Part of the Eindhoven Al Systems Institute (EAISI)

Multidisciplinairy

Brings together researchers across the areas of
mechatronics, data science, mathematics, computer
science, computer vision, embedded systems, robotics,

control engineering and more.

Partners include FME

aie-lab@tue.nl

L e ]
W ETETIOAR
INSTITUTE

TU/e

Educate
Industry

Pilot
Projects

Long Term
Research
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Deep learning: Recurrent Neural Networks (RNNs)

* RNN uses feedback loops from the output
of a layer to the input of a previous layer y[t]

* RNN have a memory for past events E] delayed feedback / state memory

* RNN can learn correlations between
signals at different time moments

e A special type of cell structure, called Long —{ B }—
Short Term Memory, enabled learning .
* RNN’s are success behind many speech T cell

recognition and natural language
processing systems.

x[t]

Source: ‘Masterclass Deep Learning’, https://vbti.nl/masterclasses/, VBTI 2018
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Drone example: learning to fly

Problem Solution

Make robust drone to collect real-world data to learn

 Learn a drone to navigate indoor and avoid

objects from

 Reduce gap between simulated and real- e Use pre-trained CNN (AlexNet, transfer learning) to
world training map camera input to actions

Source: https://arxiv.org/pdf/1704.05588.pdf ° AR DrOne 20 ﬂew in 20 different indoor

environments, racking up 11,500 collisions over the
course of 40 hours of flying time.

convl conv2 conv3 conv4 convS

96X11x11 256X5X5 384x3x3 384x3Xx3  256x3X3

C
fco /
a096 fc7 fc8 go left
- > 1024 2 not go left
go straight —
—_— |—u 2 I —_ ,
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— —

right crop go right
not go righ-’(\v
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Drone example: learning to fly

Problem Result

 Learn a drone to navigate indoor and avoid
objects

 Reduce gap between simulated and real-
world training

Source: https://arxiv.org/pdf/1704.05588.pdf

https://www.youtube.com/watch?feature=oembed&v=HbHqC8Himol

HTSC v @l /e
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Metrology example: improve semicon production yield

Problem Solution

* Reducing the influence known contributors have  Use TWINSCAN metrology to measure all wafers and
toward the on product overlay budget when moving use inline metrology to measure overlay for some
semicon manufacturing toward 7nm node for logic wafers

and 15nm node for memory (2015!) , _
* Train a model to approximate overlay vector maps for

e Inline metrology is costly (duration) the entire lot of wafers.
A Wafore havTvinsean -~ 771 ¢ With the approximated overlay vector maps for all
' . : l . .
| Metrology (alignment, leveling) ! wafers coming off the track, a process engineer can
' Wafers without I c . . ;
[ Waters measured || Integrated Metrology | redirect wafers or lots with overlay signatures outside
| Mewoogy || ®® ! the standard population to offline metrology for
I . . .

: | excursion validation.

Lithography Metrology | __________________ |

. . u : I ” ;;q\iiertglizlteo(:lﬂir:ftyr(;rlfgt\rloaliiyrrf](;rc;ai:let Izztriicr:igo”r,] ;lrjr:)ilpgcr:ﬁ:itvr—i\t/\h/eaver, MATLAB Expo 2016 Benelux —June 28th

evelop \
Exposurg Weteiogy : u | “Virtual overlay metrology for fault detection supported with integrated metrology and machine learning”, Hong-Goo Lee et al., SPIE, 19
Integrated Metrology March 2015
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Metrology example: improve semicon production yield

Problem

* Reducing the influence known contributors have

toward the on product overlay budget when moving

semicon manufacturing toward 7nm node for logic
and 15nm node for memory (2015!)

* Inline metrology is costly (duration)

Exposure Metrology

25

Examples

Develop

Integrated Metrology

4 All Wafers have TWINSCAN
Metrology (alignment, leveling)

Wafers measured

Wafers without
Integrated Metrology

with Integrated 000
Metrology 0000 o0
cooe 000000
/ oooooo
~.’_ .L¢~‘

{ Predlctedr N

Result

The model identifies systematic and random overlay

errors, improving overlay performance.

Input

Wafer Alignment metrology

1 for all colors (NIR, FIR, red, green)
« Residuals with respect to color &
model used
« Wafer quality

2 | Wafer Leveling metrology

TWINSCAN Context
3 « Chuck number

« Field position
« Target position

Training Lots

—

Function f:

3 inputs

» 1 output

Kp

Training Lots Overlay X: R=0.88125

Training Lots Overlay Y: R=0.6583

Testing Lot

Output

Testing Lots

ts Overlay X: R=0.86675

Testing Lots Overlay Y: R=0.63485
r - — o

Output ~= 0.46*Target + 0.42
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Problem solving example: generative design

Problem Solution
e Optimizing products by taking design and e Use Al as a tool during the engineering design process
manufacturing constrains simultaneously into

e Autonomously creates optimal designs from a set of

account. , _
system design requirements.

* Engineers can interactively specify their requirements
and goals, including preferred materials and
manufacturing processes—and a generative engine
will automatically produce a manufacture-ready
design as a starting point or as a final solution.

Price Performance Curve

Performance

{Output + Resilience + Efficiency}

Source: https://www.autodesk.com/solutions/generative-design/manufacturing

Cost to Produce
{Material + Process + Labor + Yield} AAUTODESK

ccccccccccccc
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Problem solving example: generative design

Problem Result

e Optimizing products by taking design and
manufacturing constrains simultaneously into
account.

Price Performance Curve

+ Efficiency}

Performance

{Output + Resilience

https://www.youtube.com/watch?feature=oembed&v=vtfNIWEJxw4

Cost to Produce
{Material + Process + Labor + Yield} AAUTODESK
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