

Today's program:

- Presentation Master's & pre-Master's program S&C (30 min)
- Time for questions (15 min)

CONTENT

- Brainport region
- Systems and Control: why?
- Systems and Control: what?
- After graduation
- Studying S&C at TU/e
- Systems and Control pre-Master program
- Application / More information

Accounts for 23,1% of total Dutch private R&D expenditure*

Engineers for the future

More than 93 nationalities

- 12,251 total number of students
- **92%** of the graduated students finds a job within 6 months. Nationwide this is 89%
- 3,298 total degrees awarded 1.441 BSc / 1.455 MSc 120 PDEng / 282 PhD
- **59,341** total number Alumni 83% Male, 17% Female

Brainport: the beating technological heart of Europe **PHILIPS ThermoFisher** SCIENTIFIC

47 new patent applications

7 patents filed by third parties

29 provisionals converted

35 transferred via a transfer or license

2747* Scientific publications

54 New start-ups and spin-offs

111/15 Large research labs

111 50 Smaller research facilities

International working environment

3,301.3 Total staff (fte)

№ 64.3% Dutch

35.7% International

61.5% Male

38.5% Female

2,122 Research staff (fte)

Full professors

Part time professors

Associate professors

Assistant professors

1,572 PhD fellows

CWTS Leiden Ranking 2020: TU/e no. 4 in industry cooperation

CONTENT

- Systems and Control: Brainport region
- Systems and Control: why?
- Systems and Control: what?
- After graduation
- Studying S&C at TU/e
- Systems and Control pre-Master program
- Application / More information

Systems and Control

- Plant
- Sensor
- Actuator
- Controller

Systems and Control

- Technological contributions in many fields
- Hidden but crucial technology
- Generic theory for many applications
- Applications in high tech industry, communication, health, 3D printing, etc...
- Key ingredient of AI for engineering systems

Communication

Additive manufacturing

Health and care

Automotive applications

Energy distribution

Aviation systems

CONTENT

- Systems and Control: Brainport region
- Systems and Control: why?
- Systems and Control: what?
- After graduation
- Studying S&C at TU/e
- Systems and Control pre-Master program
- Application / More information

Systems and Control: an interdisciplinary study

TU/e Mechanical Engineering

TU/e Electrical Engineering

Partner universities:

UNIVERSITY OF TWENTE.

4TU.

Program overview

^{*}double degree with AI&ES is not allowed

Education - core program S&C

System theory for control Control engineering (ME) (ME) Integration project Modeling dynamics (EE) or Multibody and non-System identification (EE) linear dynamics (ME)

First year schedule

Quarter 1

- Control Engineering
- System theory for control
- Homologation, or choice, or Modeling Dynamics*

Quarter 2

- Multi-body and Non-linear Dynamics*
- Choice
- Choice

Quarter 3

- System Identification
- choice
- choice

Quarter 4

- Integration Project
- choice
- choice

Choice = free elective or specialization

^{*}Students have to choose one of these 2 courses

Core courses (25 EC), compulsory:

- Control engineering
- System theory for control
- Modeling dynamics or Multibody and non-linear dynamics
- System identification
- Integration project

Core courses (25 EC), compulsory:

- Control engineering
- System theory for control
- Modeling dynamics or Multibody and non-linear dynamics
- System identification
- Integration project

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -2 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Core courses (25 EC), compulsory:

- Control engineering
- System theory for control
- Modeling dynamics or Multibody and non-linear dynamics
- System identification
- Integration project

Core courses (25 EC), compulsory:

- Control engineering
- System theory for control
- Modeling dynamics or Multibody and non-linear dynamics
- System identification
- Integration project

Integration project

- Apply all knowledge from the other core courses
- Define the goal yourself on a given set-up such as a 3-DOF gyroscope or a drone
- Work in a multidisciplinary project team (+/- 4 members)
- Develop your professional skills

Foto's: Bart van Overbeeke

Specialization in the program

- Core program (25 EC)

 1st year
 Specialization courses (20 EC)
 Free electives (incl. homologation, 15 EC)

 Internship Graduation project (15 EC) (45 EC)
- Curriculum = coherent, in line with specialization, guidance from mentor
- Internship and graduation project: independent work, explore new research questions, within university or in cooperation with industry

Sections S&C

ControlSystemsTechnology /prof Steinbuch

prof. Steinbuch prof. Heemels

high precision and accuracy / hybrid and network control/ nuclear fusion / systems engineering high-tech /
process control /
multi agent
systems / energy
management /

dynamic networks

• <u>Control</u> <u>Systems</u> / prof. Van den Hof

ELECTRICAL ENGINEERING DEPARTMENT

MECHANICAL ENGINEERING DEPARTMENT

• Dynamics & Control / prof. Van de

non linear control / automotive / vehicle dynamics / cooperative driving / manufacturing networks

hybrid and electrical driving / electromagnetics / actuator design / power electronics

Electro mechanics and
 Power
 Electronics /
 prof. Lomonova

Research groups

- TU/e world class in control:
 IEEE/IFAC Fellows, National and European Grants (ERC, VICI)
- Contacts and contracts with many industrial partners
- Staff members are authors and editors in top journals
- and have a world-wide network
- Spin-off companies
- Guiding and coaching research of close to 100 PhD students
- Follow-up PhD and graduate work in national Dutch Institute of Systems and Control (DISC)

dutch institute
of systems
and control

<u>Power</u>

prot. Lomonova

Project examples

Cooperative vehicles and traffic control

Energy distribution

Process control

Reservoir modeling and control

3D printing: modeling and control

Project examples

Magnetically levitated planar motor

Active car suspension

Wafer scanner

Care and cure robotics

Mechatronic designs, cooperative robotics

High tech for agriculture

Examples of graduation projects

- "Nonlinear modeling for dynamic analysis of directional drilling processes."
- "Robust control of an adaptive optics system under non-stationary turbulence conditions."
- "Constrained Control of An interventional X-ray machine using Sampling-based Nonlinear Model Predictive Control"
- "Controlling structural deformation of a wafer stage: a disturbance-observer based approach."
-

Internship project in Trondheim

Interaction control for submarine snake robots

Graduation project @Philips

Model predictive control (MPC) with obstacle avoidance for medical robots

Coaching

- Mentor program: Full, associate or assistant professor
- Student mentor
- Academic advisor

CONTENT

- Systems and Control: Brainport region
- Systems and Control: why?
- Systems and Control: what?
- After graduation
- Studying S&C at TU/e
- Systems and Control pre-Master program
- Application / More information

After graduation

Research:

- PhD (graduate school DISC)
- PDEng (Automotive Systems Design, or...)

Industry:

- High-tech industry
- Aviation
- Process industry
- Health
- Automotive industry

Consultancy / Start-up / Spin-off company

Foto: Bart van Overbeeke

TU/e Graduate School – shape your own future!

CONTENT

- Systems and Control: Brainport region
- Systems and Control: why?
- Systems and Control: what?
- After graduation
- Studying S&C at TU/e
- Systems and Control pre-Master program
- Application / More information

Studying S&C at TU/e

- Not easy!
- Small scale (approx. 50 students in year 1)
- Highly motivated peers
- Excellent job opportunities
- Good student evaluations

National Student Survey 2021 (1-5 scale):

Content 4.1

Lecturers 4.1

Academic guidance 4.0

General 4.0

CONTENT

- Systems and Control: Brainport region
- Systems and Control: why?
- Systems and Control: what?
- After graduation
- Studying S&C at TU/e
- Application / More information
- Systems and Control pre-Master program

Pre-Master Systems and Control

- Duration: 1 years (30 EC)
- Time of entry: September
- Language: English

Why?

Eliminate deficiencies

What?

- Program of 30 EC, to be achieved within one year
- Focus on mathematics (10 EC)

S&C pre-Master program 2021-2022

Compulsory courses	30 EC

augustos 1	2DL60	Linear Algebra	2.5
quarter 1	2WBB0	Calculus variant 2	5
	5ESC0	DSP fundamentals (signals II)	5
quarter 2	2DL40	Advanced Calculus I	2.5
	4DB00	Dynamics and control of mechanical systems	5
quarter 3	4CC10	Mechatronic Design	5
quarter 4	5EMA0	Mathematics II	5

Mandatory trainings

- RSI (healthy use of laptop)
- Safety & environment

Recommended

Matlab training

Difference WO & HBO (in general)

University of technology:

- Developing new technology and design methods to solve technological problems
- Education focusses on concepts and their implications
- Guaranteeing performance of controlled and engineered systems
- Internship is a research project

University of applied science:

- Applying existing technology and design methods to solve technological problems
- Education focusses on practical application
- Internship in industry

How to prepare during your bachelor's program?

- A pre-master's program is more work than one might think. You must be willing to work hard.
- It is not advised to do the pre-master in combination with a part-time job in industry.
- Subscription for a pre-master via Studielink before May 1st.
- required minimum level of mathematics: pre-university (VWO) mathematics
 B or TU/e mathematics B test completed before September 1st
- required minimum level of English proficiency: pre-university (VWO) level
 English or English language proficiency test completed before September 1st

CONTENT

- Systems and Control: Brainport region
- Systems and Control: why?
- Systems and Control: what?
- After graduation
- Studying S&C at TU/e
- Systems and Control pre-Master program
- Application / More information

Admission with a BSc degree in:

- Aerospace Engineering
- Applied Mathematics
- Applied Physics
- Electrical Engineering (including Automotive)
- Mechanical Engineering

Prior education needs to be of sufficient academic level and quality to be able to complete this Master's degree program

Admission via pre-master's program with

- → Direct admission:
- Automotive
- Electrical and Electronic Engineering
- Mechanical Engineering
- Technische wiskunde

- Aviation / Aeronautical Engineering
- Engineering Physics
- Mechatronics

 Tailor-made pre-master's programs for other (university + HBO) diplomas via admission committee Admission.Mech@tue.nl

More information

Information:

- TU/e-website: https://www.tue.nl/en/education/studying-at-tue
- Master S&C: https://www.tue.nl/en/education/graduate-school (info on Master's program, curriculum, interviews with students and alumni)

Questions:

Content program: <u>me.studyinformation@tue.nl</u>

