Code	de Vaknaam					
High-tech s	systems and robotics	L	<u> </u>			
Ter besprel	king met mentor	1				
4CM00	Control engineering	2	5			
5LMB0	Model predictive control	2	5			
5LWC0	Advanced actuator design	2	5			
5AUA0	Advanced sensing using deep learning	3	5			
2DMN00	Design and analysis of experiments	3	5			
5SMB0	System identification	3	5			
4AI000	Machine learning for multi-physics modeling and design	4	5			
5LSL0	Machine learning for signal processing systems	4	5			
5SC28	Machine learning for systems and control	4	5			
2IX30	Responsible data science	4	5			
Mobility						
Ter besprel	king met mentor	1				
4AT080	Vehicle control	2	5			
1CM110	Decision making in transport and logistics	2	5			
4AT030	Advanced full-electric and hybrid powertrain design	2	5			
4DM70	Analysis and design of networked dynamical systems	2	5			
5LSH0	Computer vision and 3D image processing	3	5			
5AUA0	Advanced sensing using deep learning	3	5			
0HM310	Automotive human factors	4	5			
1JM40	Behavioral operations management	4	5			
4AI000	Machine learning for multi-physics modeling and	4	5			
	design					
5SC28	Machine learning for systems and control	4	5			
Health care	2					
Ter besprel	king met mentor	1				
5LSC0	2	5				

Tabel 3. Specialisatievakken

Table 3. Specialization courses

Code	Course name	Theme	Credits
High-tech syst	tems and robotics		
For discussion	with mentor	1	
4CM00	Control engineering 2 5		5
5LMB0	Model predictive control	2	5
5LWC0	Advanced actuator design	2	5
5AUA0	Advanced sensing using deep learning	3	5
2DMN00	Design and analysis of experiments	3	5
5SMB0	System identification	3	5
4AI000	Machine learning for multi-physics modeling and design	4	5
5LSL0	Machine learning for signal processing systems	4	5
5SC28	Machine learning for systems and control	4	5
2IX30	Responsible data science	4	5
Mobility			
For discussion	with mentor	1	
4AT080	Vehicle control	2	5
1CM110	Decision making in transport and logistics	2	5
4AT030	Advanced full-electric and hybrid powertrain design	2	5
4DM70	Analysis and design of networked dynamical systems	2	5
5LSH0	Computer vision and 3D image processing	3	5
5AUA0	Advanced sensing using deep learning	3	5
0HM310	Automotive human factors	4	5
1JM40	Behavioral operations management	4	5
4AI000	Machine learning for multi-physics modeling and design	4	5
5SC28	Machine learning for systems and control	4	5
Health care			
For discussion	with mentor	1	
5LSC0	2	5	

5LSB0	Monitoring of respiration and circulation	2	5	5LSB0	Monitoring of respiration and circulation
8VM60	Ultrasound in biomedical engineering	2	5	8VM60	Ultrasound in biomedical engineering
8TM10	Orthopaedic soft tissues: biomechanics	2	5	8TM10	Orthopaedic soft tissues: biomechanics
5LSH0	Computer vision and 3D image processing	3	5	5LSH0	Computer vision and 3D image processing
8DC00	Medical image analysis	3	5	8DC00	Medical image analysis
8DM20	Capita selecta in medical image analysis	3	5	8DM20	Capita selecta in medical image analysis
5LSJ0	Image analysis for health-care technologies	3	5	5LSJ0	Image analysis for health-care technologies
5LIV0	Video health monitoring	3	5	5LIV0	Video health monitoring
8DM50	Machine learning in medical imaging and biology	4	5	8DM50	Machine learning in medical imaging and biology
5LSM0	Convolutional neural networks for computer vision	4	5	5LSM0	Convolutional neural networks for computer vision
1JM40	Behavioral operations management	4	5	1JM40	Behavioral operations management
Smart cities				Smart cities	
7LY5M0	Intelligent buildings	1	5	7LY5M0	Intelligent buildings
1CM110	Decision making in transport and logistics	1	5	1CM110	Decision making in transport and logistics
7ZW5M0	Smart healthy urban environments	1	5	7ZW5M0	Smart healthy urban environments
7LY3M0	Building performance and energy systems	1	5	7LY3M0	Building performance and energy systems
	simulation				simulation
7KT4M0	Digital design & manufacturing	2	5	7KT4M0	Digital design & manufacturing
5LSH0	Computer vision and 3D image processing	2	5	5LSH0	Computer vision and 3D image processing
5LSM0	Convolutional neural networks for computer vision	2	5	5LSM0	Convolutional neural networks for computer vision
0HM150	Advanced cognitive engineering	2	5	0HM150	Advanced cognitive engineering
7M900	Fundamentals of building information modeling	3	5	7M900	Fundamentals of building information modeling
2IMA20	Algorithms for geographic data	3	5	2IMA20	Algorithms for geographic data
5XSK0	Data fusion & semantic interpretation	4	5	5XSK0	Data fusion & semantic interpretation
5AUA0	Advanced sensing using deep learning	4	5	5AUA0	Advanced sensing using deep learning
AI Foundati	ons and science applications			AI Foundatio	ons and science applications
Ter besprek	ing met mentor	1		For discussion	n with mentor
4CS000	Optimal control and dynamic programming	2	5	4CS000	Optimal control and dynamic programming
3MT120	Advanced computational fluids and plasma	2	5	3MT120	Advanced computational fluids and plasma
	dynamics				dynamics
3FMX0	Physics modelling and simulations	2	5	3FMX0	Physics modelling and simulations
3MS010	Advanced fluid dynamics	2	5	3MS010	Advanced fluid dynamics
3MS020	Soft matter physics	2	5	3MS020	Soft matter physics
5LMA0	Model reduction	3	5	5LMA0	Model reduction
2DI66	Advanced simulation	3	5	2DI66	Advanced simulation
4AI000	Machine learning for multi-physics modeling and	4	5	4AI000	Machine learning for multi-physics modeling and
	design				design

2AMM20	Research topics in data mining	4	5	2AMM20	Research topics in data mining	4	5
Manufactu	ring systems			Manufactur	ing systems		
1CM160	Manufacturing technology	1	5	1CM160	Manufacturing technology	1	5
ICM10	Modeling and analysis of manufacturing systems	2	5	ICM10	Modeling and analysis of manufacturing systems	2	5
4DM40	Modelling and control of manufacturing networks	2	5	4DM40	Modelling and control of manufacturing networks	2	5
4CM70	Integrated system design	2	5	4CM70	Integrated system design	2	5
4CM30	Supervisory control	2	5	4CM30	Supervisory control	2	5
1CM100	Multi-echelon inventory management	2	5	1CM100	Multi-echelon inventory management	2	5
1CM120	Advanced maintenance and service logistics	2	5	1CM120	Advanced maintenance and service logistics	2	5
2DI66	Advanced simulation	3	5	2DI66	Advanced simulation	3	5
1BM110	Data driven artificial intelligence	3	5	1BM110	Data driven artificial intelligence	3	5
4CS000	Optimal control and dynamic programming	4	5	4CS000	Optimal control and dynamic programming	4	5
0HM280	Human robot interaction	4	5	0HM280	Human robot interaction	4	5
1JM40	Behavioral operations management	4	5	1JM40	Behavioral operations management	4	5