To help you make informed choices regarding broadening and deepening electives, within each Thematic Learning Area (TLA) a number of learning paths are offered. A learning path is a selection of TLA electives across departments, grouped around a specific subtheme. The learning paths within a TLA are based on the assumed amount of pre-requisite knowledge, indicating that familiar programs have better access. This means that some learning paths are specifically accessible for students from one department, whereas other learning paths suit best for students from a specific department. If you have met the expected pre-knowledge, the relevant electives become accessible. You can make well-informed choices by either choosing specific electives across the different learning paths, or by choosing a pre-defined learning path.

Always make sure that you check the required pre-requisite knowledge/courses via the Course Catalogue for the elective courses you would like to follow!

TLA Energy

Description of the content
The TLA Materials, incorporates bachelor electives around composites and matter, their characteristics, working mechanisms, and to invent and construct solutions for and answers to contemporary technological challenges.

Offered by
BME, CE&C, ME, APSE, EE

Language
English

Contact person
Rob van der Heijden, r.v.der.heijden@tue.nl

Learning path 1 – Chemistry of Materials

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course name</th>
<th>Link to course catalogue</th>
</tr>
</thead>
<tbody>
<tr>
<td>6BER02</td>
<td>Macro Organic Chemistry</td>
<td></td>
</tr>
<tr>
<td>8TC20</td>
<td>Basic Tissue Engineering</td>
<td></td>
</tr>
<tr>
<td>6BER06</td>
<td>Electrochemical Energy Conversion & Storage</td>
<td></td>
</tr>
<tr>
<td>6BER08</td>
<td>Polymer Chemistry & Technology 2</td>
<td></td>
</tr>
<tr>
<td>6BER04</td>
<td>Topics in Molecules & Materials</td>
<td></td>
</tr>
</tbody>
</table>

Learning path 2 – Mechanics of Materials

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course name</th>
<th>Link to course catalogue</th>
</tr>
</thead>
<tbody>
<tr>
<td>4LC00</td>
<td>Strength & Structure</td>
<td></td>
</tr>
<tr>
<td>4CBLC00</td>
<td>CBL Computer Aided Engineering</td>
<td></td>
</tr>
<tr>
<td>4MB10</td>
<td>Material Models</td>
<td></td>
</tr>
</tbody>
</table>
Thematic Learning Area: Materials

Learning path 3 – Nanomaterials

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course name</th>
<th>Link to course catalogue</th>
</tr>
</thead>
<tbody>
<tr>
<td>5XPB0</td>
<td>Nanomaterials: Nano Devices & Integration</td>
<td></td>
</tr>
<tr>
<td>34NPC</td>
<td>Nanomaterials: Physics & Characterization</td>
<td></td>
</tr>
<tr>
<td>6BER01</td>
<td>Nanomaterials: Chemistry & Fabrication</td>
<td></td>
</tr>
</tbody>
</table>
Thematic Learning Area: Materials

Start

1. Organic Chemistry
 CE&C: 6BR01, 6MR01, 6MR02
 BME: 8BA010, 8BM030

2. Thermodynamics
 CE&C: 6BRA04, 6BAR01
 AP: 32TDD; ME: 4EB00

3. Electrochemistry
 CE&C: 6BAR02

4. Materials Science
 CE&C: 6BM003
 BME: 8BA110
 ME: 4MA00

5. Polymer Chemistry & Technology
 CE&C: 6BMR05

6. Mechanics 1
 BME: 8BA090
 ME: 4RA00

7. Mechanics 2
 BME: 8BB070
 ME: 4MB00

Materials

1. Macro Organic Chemistry
 CE&C: 6RER02
 L3 Q 2 T A

2. Physical Chemistry 2
 CE&C: 6RER05
 L3 Q 4 T B

3. Molecular Simulations in CE&C
 CE&C: 6RER10
 L3 Q 3 T C

4. Electrochemical Energy Conversion & Storage
 CE&C: 6RER06
 L3 Q 1 T C

5. Strength & Structure
 CE&C: 6CL00
 L3 Q 3 T A

6. CBL Computer Aided Engineering
 CE&C: 6CBL00
 L3 Q 2 T A

7. Material Models
 CE&C: 6MB10
 L2 Q 2 T A

8. Nanomaterials: Nano Devices & Integration
 CE&C: 6XPF08
 L3 Q 3 T C

 CE&C: 6SNPC
 L2 Q 3 T B

10. Nanomaterials: Chemistry & Fabrication
 CE&C: 6RER01
 L1 Q 1 T A

Chemistry of Materials

Mechanics of Materials