

Plasma technology

ions, electrons, radiation molecules and reactive neutrals ("radicals")

Electrical power in Personal Personal

Applications:

- Micro/nanoelectronics
- Displays
- Abrasion protection
- Barrier layers vs. humidity
- Energy!

Plasma technology for clean energy & environment

Plasma-based synthesis of thin films and interfaces in energy conversion (photovoltaics) & storage (batteries, electrocatalysis) devices

Energy transition scenario

Photovoltaics as affordable and leading renewable energy source

- PV: nearly 2 TW, predicted 6.5 TW by 2035.
- Lower cost (below thermal- coal and gas plantgeneration) and higher efficiency needed for PV to prompt development of 30-70 TW of solar energy capacity by 2050.

Beyond c-Si PV: the role of thin film PV

- Current cost reduction in c-Si is 80% the result of upscaling and 20% the result of innovation.
- As the cost reduction through upscaling is now limited, the relevance of innovation increases. In terms
 of conversion efficiency, c-Si PV (26.7%) approaches its thermodynamic limit (29.4%). Beyond the
 thermodynamic limit: combining c-Si with thin film PV technologies in tandem PV.

Energy transition scenario

Photovoltaics and the implication of electrification in all sectors

- Intermittent character: storage is necessary
- Major impact on sectors now running on fossil fuels
- Transport: electric vehicles, cost parity with combustion engine cars by 2025. By 2035, 100% new car sales are electric in EU, US, China.
- Chemical industry

Li-ion batteries: state-of-the art and beyond

Towards the next generation Li-ion batteries

- Material challenges
- Interface challenges: electro-chemical and mechanically stable; selective towards charge transfer & transport

Energy transition scenario

Photovoltaics and the implication of electrification in all sectors

- Intermittent character: storage is necessary
- Major impact on sectors now running on fossil fuels
- **Transport**: electric vehicles, cost parity with combustion engine cars by 2025. By 2035, 100% new car sales are electric in EU, US, China.
- Greening of chemical industry via electrification: electro-synthesis of hydrocarbons from H₂O (to H₂) and CO₂ (to CO). Cost of solar electricity and electronto-molecule conversion efficiency: key factors to make electrification competitive with thermal plants.

Electrolysis (H₂O splitting)

Quest for industrially compatible O₂ evolution reaction (OER) electro-catalysts

(multi-electron transfer steps for O₂)

Internships & job opportunities

- The Dutch industry is leading in the field of manufacturing vacuum equipment for thin film deposition.
- ASML, Solaytec, S-ALD, Tempress, Solliance, Hyet Lithium, SMIT Thermal Solutions, ECN part of TNO, DSM, PhD opportunities

Overview of courses for this specialization

- Plasma Processing Science and Technology 3MP170, Q3
- Solar cells 3MP110, Q3

E-mail me (<u>m.creatore@tue.nl</u>) by Friday the 16th, if you would like to meet and then we organize a meeting

@ Market: poster + in-depth presentation on our research activities with Kousumi Mukherjee (PhD candidate)

