



#### **SET @ Electromechanics & Power Electronics (EPE)**

A master at the Electromechanics and Power Electronics group

Prof. dr. ir. George Papafotiou, September 2022

Department of Electrical Engineering

### Welcome to the EPE group

Enthusiastic team of ~55 people with a relaxed and informal atmosphere

Many (inter)national industrial partners

12 part-time fellows from industry

State-of-the-art laboratory

Rail

Very good job opportunities





TNO



EPE – Electromechanics and Power Electronics 2

# 680 m<sup>2</sup> state of the art research and education laboratories + new MV laboratory – 120 m<sup>2</sup> since June 2022



**Research laboratory** 



Educational laboratory



Low power laboratory

**ΓU/**e





### **E**lectromechanics & **P**ower **E**lectronics group

**EPE = "systems** and **technology** for **processing electric energy**"

Interaction between electrical and mechanical energy (electromechanics) Dynamic control of flow and shape of electric energy (power electronics)



**EPE** – Electromechanics and Power Electronics

### A relevant and challenging discipline

- Electric energy is omnipresent
  - Truly multi-disciplinary
- No two projects are the same
  - Determine your own focus:
    - Modeling
    - Design
    - Experimental
- Your choice
  - Become a specialist... (components)
  - ... or a generalist (systems)



### **E**lectromechanics & **P**ower **E**lectronics - group

#### Our scientific mission:

Performing top-class scientific *research* with societal and industrial **relevance** in electromechanical and power electronic systems

#### Our educational mission:

*Educating* **top-class** engineers in our discipline by providing them with a well-balanced skill-set to start or further their industrial or academic career

## We strive for a system-level approach...



mechanics

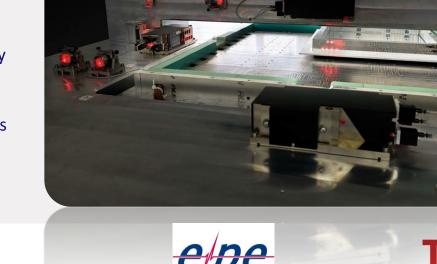
Electronics





### Our mission is reflected in the *master courses*

**Design oriented teaching** in the advanced courses, through which you will:


- 1. *learn* the fundamental basics during the lectures
- **2.** *gain insight* into fundamentals through interactive, simulation-based instructions
- **3.** *apply* the newly gained knowledge with designoriented homework assignments
- **4. be tested** through design assignments representative of a practical problem





### Our mission is reflected in the graduation projects

- Gain broader and **deeper knowledge** and experience
- You are the **problem owner**:
  - Tailored assignment
  - Individual freedom
  - Take your responsibility, well-supported by coaches
- Both industry and academic oriented projects possible
- Informal atmosphere



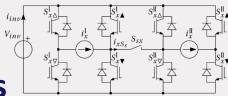
### **PEL/e** Research portfolio

Research areas:



Modular topologies & systems WBG

**Distributed control** 


Magnetics for PE

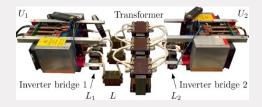
9





### PEL/e Research portfolio – Grid connected and MV Power Electronics

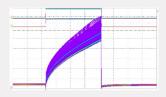



#### • Scalable architectures

- Multi-level and interleaved topologies
- Multi-port converters
- Passive component reduction
- High power density
  - Optimal SS modulation and control
  - Wide band gap optimized circuits
  - RF power conversion
- Converter reliability and lifetime
  - Physics of reliability
  - Thermal cycling reduction
  - Redundant power conversion



Multiport SS AC/DC converter


#### Dynamic drive reconfiguration





Redundant battery system

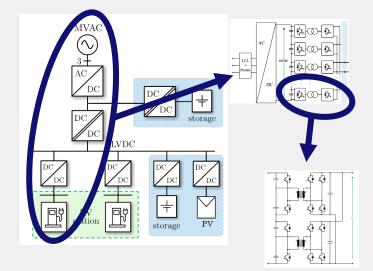
#### 100 kW 3-level, 3phase SiC DAB



#### SiC mosfet lifetime determination



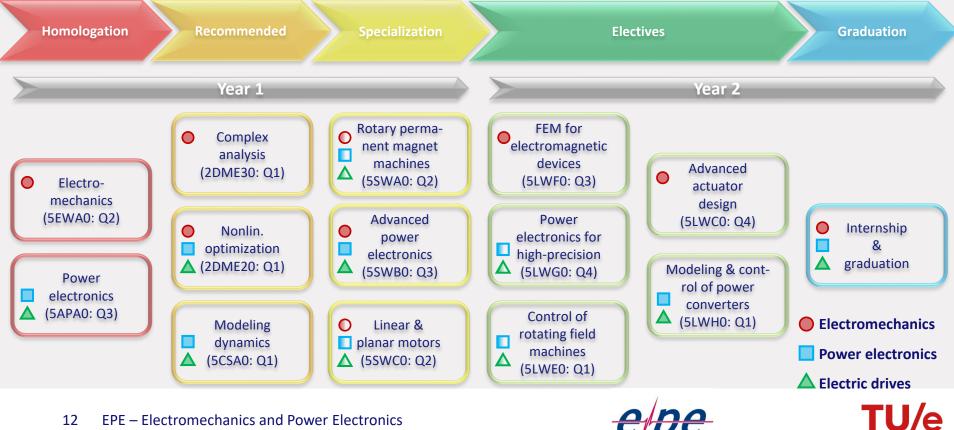



#### The Solid-State Transformer (SST) – Grid connected and MV Power Electronics

System architecture with Solid State Transformer (SST) concept as building block

- Optimal number, voltage levels and topologies of conversion stages for reduced cost, footprint
- DC protection concepts
  - Identification of faults & current limitation
  - Isolation and current interruption

#### **Critical Components**


- Medium frequency transformers
  - Isolation properties under MF switching
  - Magnetics new materials and design
  - Cooling
- Semiconductors: Wide Band-Gap
  - SiC technology in MV packaging and optimal topology design
  - Parasitic inductances and their effects
  - EMI
  - design of passives
  - reliability







### **3 Tracks towards specialization: 7 courses**



#### **Next steps**

 Plan your master, and if considering EPE – request a follow-up meeting @EPE by mailing Ms. Tanja Swanink - <u>secretariaat-epe@tue.nl</u>



