

Presentation Mechanical Engineering - Hans Kuerten and Daniël Lelivelt

Accounts for 23,1% of total Dutch private R&D expenditure*

Engineers for the future

More than 93 nationalities

- 12,251 total number of students
- **92%** of the graduated students finds a job within 6 months. Nationwide this is 89%
- 3,298 total degrees awarded 1.441 BSc / 1.455 MSc 120 PDEng / 282 PhD
- **59,341** total number Alumni 83% Male, 17% Female

47 new patent applications

7 patents filed by third parties

29 provisionals converted

35 transferred via a transfer or license

2747* Scientific publications

54 New start-ups and spin-offs

111/15 Large research labs

111 50 Smaller research facilities

International working environment

3,301.3 Total staff (fte)

№ 64.3% Dutch

35.7% International

61.5% Male

38.5% Female

2,122 Research staff (fte)

Full professors

Part time professors

Associate professors

Assistant professors

1,572 PhD fellows

CWTS Leiden Ranking 2020: TU/e no. 4 in industry cooperation

Why TU/e?

- High Tech Campus
 - Signify (Philips Lighting) and Healthcare
 - Solliance PV solar energy
 - SEAC Solar Energy
 - ECN Energy research Center NL
 - NXP semiconductors
- ASML wafersteppers (Veldhoven)
- Océ a Canon company (Venlo)
- VDL Groep
- DAF trucks
- TNO Applied Scientific Research
- TU/e
- Automotive Campus (Helmond)
- FEI High-performance microscopy

TU/e in a nutshell

- High quality research and education
- International network with prominent universities and institutes
- Modern facilities and lab spaces
- TU/e alumni in high demand among employers
- International community with over 80 nationalities
- Friendly, open culture

TU/e in a nutshell

- One campus in city center
- Compact, green
- Modern student facilities

TU/e in a nutshell

- Student associations
- Excellent sport facilities
- Student teams
- Eindhoven city of design and technology

Mechanical Engineering

- Why Mechanical Engineering (ME) and why TU/e?
- Content of the Master program at ME
- Specializations in the Master
- Experience Daniel Lelivelt
- Pre-Master's program (schakelprogramma)
- Why study at a university?

Why Mechanical Engineering at TU/e?

- Excellent chance of good job
- Combination of depth and broad range of topics
- Participation in all research themes of TU/e
- Very good contacts with Brainport industries

Did you know that we are in the global top-50 of Engineering & Technology universities? One of the highest ranked areas is Mechanical Engineering! (rank 37)

Mechanical Engineering

- Why Mechanical Engineering (ME) and why TU/e?
- Content of the Master program at ME
- Specializations in the Master
- Experience Daniel Lelivelt
- Pre-Master's program (schakelprogramma)
- Why study at a university?

Master program MW: overview

2 years, 120 Ecs, English, Master of Science (MSc)

Core	20	4 core courses out of 12 core courses offered	
Specialization	20	20 EC out of a total of ~150 EC offered	_ Y
Electives	15	Free choice out of all TU/e Master courses offered	T
Professional skills	5	2 compulsory modules	
Internship	15		
Graduation project / Thesis	45		Υ γ

One quartile = 15 EC ≈ 10 weeks

Most courses are 5 EC = 3 courses per quartile

8 weeks courses, 2 weeks exams

Resits in next quartile, only 2 exam possibilities per year

Degree program: professional skills

Each student has to pass two courses:

- 4WM00 Coaching and tutoring (2.5EC)
 (group dynamics, leadership, project planning, ...)
- 4WM10 Career Development (2.5EC)
 (orientation of future career, assessment, networking, ...)

* HBO and international students take the course 4WM50 Group work and academic writing.

Mechanical Engineering

- Why Mechanical Engineering (ME) and why TU/e?
- Content of the Master program at ME
- Specializations in the Master
- Experience Daniel Lelivelt
- Pre-Master's program (schakelprogramma)
- Why study at a university?

Research divisions

Dynamical	Thermo	Computational and
Systems	Fluids	Experimental
Design	Engineering	Mechanics
(DSD)	(TFE)	(CEM)

- Each research division contains different sections
- Specializations for MW are the sections

Sections

Section	Chair	Research division
CST: Control Systems Technology	Prof. Steinbuch	DSD
D&C: Dynamics and Control	Prof. van de Wouw	DSD
P&F: Power and Flow	Prof. Deen	TFE
ET: Energy Technology	Prof. Smeulders	TFE
MoM: Mechanics of Materials	Prof. Geers	CEM
PT: Polymer Technology	Prof. Anderson	CEM
MS: Microsystems	Prof. Den Toonder	CEM

A section is the basis for your choice for core and specialization courses, internship, thesis project and possibly your electives.

Dynamical Systems Design

Sections:

- Control Systems Technology, Prof. M. Steinbuch
- Dynamics and Control, Prof. N. van de Wouw

Example research areas:

- Automotive Powertrains
- Advanced Motion Systems (Hybrid and Networked Control Systems)
- Robotics for Care and Cure
- Energy Systems
- Acoustics and Noise Control
- Manufacturing Networks
- Cooperative Adaptive Cruise Control
- Vehicle dynamics, tire dynamics and control

Dynamical Systems Design

Cooperative Adaptive Cruise Control

Master-slave, haptic feedback

Wafer stepper

Fusion reactor

Thermo Fluids Engineering

Sections:

- Power and Flow, Prof. N. Deen
- Energy Technology, Prof. D. Smeulders

Example research areas:

- Efficient Engines
- Multiphase Flows
- Metal Fuels
- Micro-scale Heat Transfer
- Small-scale Renewable Energy Systems
- Heat Storage

Thermo Fluids Engineering

WEDACS

Solar simulator

Master Mechanical Engineering

TU/e

Computational and Experimental Mechanics

Sections:

- Mechanics of Materials, Prof. M. Geers
- Polymer Technology, Prof. P. Anderson
- Microsystems, Prof. J. den Toonder

Example research areas:

- Mechanics of Micro-Electronics
- Advanced High-Tech Materials
- Materials for Energy
- Applied Rheology and Process Modelling
- Chaotic Mixing and Multiphase Flows
- Micro-Manufacturing Technologies
- Cells and Organs on a Chip

Computational and Experimental Mechanics

Wearable sweat sensor

*** A PROPERTY OF THE PROPERTY

DAF cylinder heads: micro-crack formation

micro structure

processing history

macroscopic performance

Novel microactuators for ASML

Mechanical Engineering

- Why Mechanical Engineering (ME) and why TU/e?
- Content of the Master program at ME
- Specializations in the Master
- Experience Daniel Lelivelt
- Pre-Master's program (schakelprogramma)
- Why study at a university?

Experience Daniël Lelivelt

- Bachelor Mechanical Engineering
 - BEP: Energy storage
- Master ME
 - Power & Flow

Experience Daniël Lelivelt

- Before Master:
 - Visit master-presentations
 - Talk with master-students
 - Look on websites of research groups
 - Check interesting courses
 - Free space

Introduction to CFD

Experimentation for ME – Scanning Electron Microscopy

Experience Daniël Lelivelt

- During Master:
 - Develop yourself
 - Soft-skills
 - Self-reflection
 - Internship: Bosch, Tilburg
 - Look into job options
 - Plan your future

MyFuture.tue.nl

Graduation Project

- Characterization of the fluidization and reduction behavior of combusted iron(-oxide)
- Practical

Iron fuel cycle, adapted from SOLID1

¹https://teamsolid.org/our-solution/

Extracurricular activities

- SSCE (Student Sport Centre Eindhoven)
 - ± 70 sports
- Part-time job: Teaching Assistant
 - Education team
 - Guided selfstudies of master course
- STEHVEN
- W.S.V. Simon Stevin
- Student team
 - Organizing events for energy enthusiasts

Student teams

Mechanical Engineering

- Why Mechanical Engineering (ME) and why TU/e?
- Content of the Master program at ME
- Specializations in the Master
- Experience Daniel Lelivelt
- Pre-Master's program (schakelprogramma)
- Why study at a university?

Pre-Master's program for HBO-students

- Program of 30 EC's
- Starts in September
- Aim of the program
 - Knowledge deficiency, especially mathematics
 - Does academic education suit you?

Pre-Master's program 2022-2023

Quartile 1	Quartile 2	Quartile 3	Quartile 4
Calculus (5 EC)	Advanced Calculus (2.5 EC)	Solid Mechanics (CEM)	
Linear algebra (2.5 EC)	Dynamics & control of mechanical systems (DSD)	Electives	Electives
Trainings	Thermodynamics (TFE)		
7.5 EC	12.5 EC	10 or 5 EC	0 or 5 EC

- Trainings: Matlab, RSI, safety and environment
- Compulsory courses of 25 EC, one elective of 5 EC
- 10 EC for mathematics
- If interested in new master's program AIES: choose specific elective

Regulations in the pre-master's program

- Binding Study Advice of 100 % so 30 EC's in 1 year
- With good study progress the student can start attending master courses up to a maximum of 15 EC's
 - Yields exemptions in the master

Be prepared

- A pre-master's program is more work than one might think. You must be willing to work hard.
- It is not advised to do the pre-master in combination with a part-time job in industry.
- Subscription for a pre-master via Studielink before May 1st.
- required minimum level of mathematics: pre-university (VWO) mathematics B or <u>TU/e</u>
 mathematics B test completed before September 1st
- required minimum level of English proficiency: pre-university (VWO) level English or <u>English language proficiency test</u> completed before September 1st

Admission

Direct admission with:

 Mechanical Engineering, Applied Physics, Marine Technology and Aerospace Engineering at university level (WO Werktuigbouwkunde, Technische Natuurkunde, Maritieme Techniek en Lucht- en ruimtevaarttechniek)

Admission via pre-master's program with:

- Mechanical Engineering, Electrical Engineering, Automotive, Applied Physics, Mechatronics, Aerospace Engineering at HBO level (HBO Werktuigbouwkunde, Elektrotechniek, Autotechniek, Technische Natuurkunde, Mechatronica, Luchtvaarttechniek)
- Tailor-made pre-master's programs for other (university + HBO) diplomas via admission committee

Mechanical Engineering

- Why Mechanical Engineering (ME) and why TU/e?
- Content of the Master program at ME
- Specializations in the Master
- Experience Daniel Lelivelt
- Pre-Master's program (schakelprogramma)
- Why study at a university?

Difference WO and HBO

University of Technology:

- Developing new technology and design methods to solve technological problems
- In depth education
- Lecturers are also researchers
- Internship is a research project

But also: research in close connection with industry!

University of Applied Science:

- Applying existing technology and design methods to solve technological problems
- Education focusses on practical application
- Internship in industry

Or contact:

- Academic advisor: <u>me.academic.advisor.msc@tue.nl</u>
- Program director: <u>J.G.M.Kuerten@tue.nl</u>
- TU/e-website: https://www.tue.nl/en/education/studying-at-tue
- ME-website: www.tue.nl/me (info on our department, Master's program, etc.)

