EIRES EINDHOVEN INSTITUTE FOR RENEWABLE ENERGY SYSTEMS

13h45 - 14h00

Welcome & Introduction

by Dr. Henk Huinink - TU/e | EIRES | APSE

14h00 - 14h35

Using salt mixtures / double salts in thermochemical storage

by Prof. Michael Steiger – Hamburg University

14h35 - 15h10

Synthetic approaches to enhance materials for thermochemical energy storage

by Prof. Candida Milone – University of Messina

15h10 - 15h30

Break, coffee & tea

15h30 - 16h10

Thermochemical energy storage in energy storage mixed systems

by Prof. Yukitaka Kato – Tokyo Institute of Technology

EIRES

The energy system today: linear and wasteful flows of energy, in one direction only

Future EU integrated energy system: energy flows between users and producers, reducing wasted

resources and money

An Integrated EU Energy System will have three main characteristics:

- · A more efficient and "circular" system, where waste energy is captured and re-used
- A cleaner power system, with more direct electrification of end-use sectors such as industry, heating of buildings and transport.
- · A cleaner fuel system, for hard-to-electrify sectors like heavy industry or transport

Transport, conversion and storage of energy is key

Thermal Energy

78.3%

TU/e

Thermal Energy Storage

Sensible heat

PCM

Thermo-Chemical Energy Storage

Compounds	$AB(s) \rightleftharpoons A(s) + B(g)$	Temperature levels (°C)
Hydrates	$S \cdot bH_2O(s) \rightleftharpoons S \cdot aH_2O(s) + (b-a)H_2O(g)$	< 260
Ammoniates	$S \cdot bHN_3(s) \rightleftharpoons S \cdot aNH_3(s) + (b-a)NH_3(g)$	< 300
Hydroxides	$M(OH)_2(s) \rightleftharpoons MO(s) + \frac{H_2O}{(g)}$	270 - 800
Carbonates	$MCO_3(s) \rightleftharpoons MO(s) + \frac{CO_2}{2}(g)$	900 – 1500
Oxides	$2MO_2(s) \rightleftharpoons M_2O_3(s) + \frac{1}{2}O_2(g)$	900 – 1500

Speakers

IONS

MATERIALS

SYSTEMS

SPEAKER

Prof. M. Steiger, Hamburg University

Prof. M. Steiger | Hamburg University SPEAKER

Prof. C. Milone, University of Messina

Prof. C. Milone | University of Messina SPEAKER

Prof. Y. Kato, Tokyo Tech

Prof. Y. Kato | Tokyo Institute of Technology

Using salt mixtures / double salts in thermochemical storage

Synthetic approaches to enhance materials for thermochemical energy storage

Thermochemical energy storage in energy storage mixed systems

EIRES EINDHOVEN INSTITUTE FOR RENEWABLE ENERGY SYSTEMS

13h45 - 14h00

Welcome & Introduction

by Dr. Henk Huinink - TU/e | EIRES | APSE

14h00 - 14h35

Using salt mixtures / double salts in thermochemical storage

by Prof. Michael Steiger – Hamburg University

14h35 - 15h10

Synthetic approaches to enhance materials for thermochemical energy storage

by Prof. Candida Milone – University of Messina

15h10 - 15h30

Break, coffee & tea

15h30 - 16h10

Thermochemical energy storage in energy storage mixed systems

by Prof. Yukitaka Kato – Tokyo Institute of Technology

