THz Resonances with Infinity Lifetime

Jaime Gómez Rivas

j.gomez.rivas@tue.nl

Technische Universiteit **Eindhoven** University of Technology

TU

Our motivation

n = 100 GHz ... 10 THz I = 3 mm ... 30 µm

Semiconductors, nanostructures, (bio-)molecules, tissue...

- Resonant structures at THz frequencies
 THz trapping and Large local field enhancements.
- Metals and Semiconductors Þ Active control of resonant response.

Contents

- Introduction to optical THz time domain techniques
- THz plasmonics with semiconductors
- THz metasurfaces and near-field (THz beaming, plasmon induced transparency and bound states in the continuum)

Acknowledgements

- Niels van Hoof
- Stan ter Huurne
- Alexei Halpin
- Giorgos Georgiou
- Arkabrata Batthacharya
- Martijn Schaafsma
- Hemant Tjagy
- Audrey Berrier

Jose A. Sanchez GilDiego Abujetas

PHILIPS

Lorenzo TripodiMarion Matters

TeraNova

Mohammad Ramezani

THz time domain spectroscopy (THz-TDS)

THz time domain spectroscopy is based on ultrashort optical pulses to generate and detect single (or few) cycle THz pulses

Time-resolved THz-TDS (TR-THz-TDS)

TR-THz-TD near-field microscopy (TR-THz-TD-NFM)

Si bowtie resonators

A. Berrier ... JGR, Optics Express, 20(5), 5052 (2012) A. Berrier ... JGR, Biomedical Optics Express, 3(11), 2937 (2012)

Photo-generated THz antennas

Sample: flat single crystal GaAs layer (1 mm) on quartz

G. Georgiou ... JGR , Scientific Reports 4, 3584 1-5 (2014)

Photo-generated THz antennas

G. Georgiou ... JGR , Scientific Reports 4, 3584 1-5 (2014); Phys. Rev. B 91, 125443 (2015).

Photo-generated metasurfaces

Left blazed

8 5

Fluence (µJ/cm²)

Light Propagation with Phase Discontinuities: Generalized Laws of **Reflection and Refraction**

Nanfang Yu,¹ Patrice Genevet,^{3,2} Mikhail A. Kats,³ Francesco Aieta,^{3,3} Jean-Philippe Tetienne,^{3,4}

Federico Capasso,¹⁺ Zeno Gaburm^{1,5}*

., Opt. Express 22, 26559 (2014). **T. Steinbusch**

ordinary

reflection

ordinary refraction

y-polarized incidence from collimated guantum

cascade laser (A_=Bµm)

nomalous

reflection

nomalous refraction

Photo-generated carrier dynamics in GaAs

G. Georgiou ... JGR , Scientific Reports 4, 3584 1-5 (2014)

Full vectorial mapping of resonant THz near-fields

Batthacharya ... JGR, APL Photonics (2016); Phys. Rev. B 93, 035438 (2016)

Plasmon induced transparency

A. Halpin ... JGR, Appl. Phys. Lett. 110, 101105 (2017)

Plasmon induced transparency

A. Halpin et al., Appl. Phys. Lett. 110, 101105 (2017); Phys. Rev. B 96, 085110 (2017)

Lattice of detuned resonators: Diffraction induced transparency

M. Schaafsma ... JGR, ACS photonics 3, 1596 (2016)

Bound states in the continuum

TeraNova

Contact free and high resolution mapping of:

- Carrier mobility
- Carrier density (doping)
- (photo-)conductivity
- Carrier lifetimes

